精英家教網 > 高中數學 > 題目詳情
設Sn是等差數列{an}(n∈N*)的前n項和,且a2=3,a5=9,則S5=
 
分析:由已知數列的項可得a1和公差d,代入求和公式可得.
解答:解:設等差數列的公差為d,
a2=a1+d=3
a5=a1+4d=9
,
解得
a1=1
d=2
,
由等差數列的求和公式和性質可得:
S5=5a1+
5×4
2
d=25
故答案為:25
點評:本題考查等差數列的求和公式,涉及通項公式的應用,屬基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

有以下四個命題:
①對于任意實數a、b、c,若a>b,c≠0,則ac>bc;
②設Sn 是等差數列{an}的前n項和,若a2+a6+a10為一個確定的常數,則S11也是一個確定的常數;
③關于x的不等式ax+b>0的解集為(-∞,1),則關于x的不等式
bx-ax+2
>0的解集為(-2,-1);
④對于任意實數a、b、c、d,若a>b>0,c>d則ac>bd.
其中正確命題的是
 
(把正確的答案題號填在橫線上)

查看答案和解析>>

科目:高中數學 來源: 題型:

設Sn是等差數列{an}的前n項和,S3=3(a2+a8),則
a3
a5
的值為(  )
A、
1
6
B、
1
3
C、
3
5
D、
5
3

查看答案和解析>>

科目:高中數學 來源: 題型:

設Sn是等差數列{an}的前n項和,a12=-8,S9=-9,則S16=( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

設Sn是等差數列{an}的前n項和,且a4=-4,a9=4,則( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•青島一模)設Sn是等差數列{an}的前n項和,a1=2,a5=3a3,則S9=( 。

查看答案和解析>>

同步練習冊答案