設(shè)定義在上的函數(shù),給出以下四個(gè)論斷:
①的周期為π; ②在區(qū)間(,0)上是增函數(shù);
③的圖象關(guān)于點(diǎn)(,0)對稱;④的圖象關(guān)于直線對稱.
以其中兩個(gè)論斷作為條件,另兩個(gè)論斷作為結(jié)論,寫出你認(rèn)為正確的一個(gè)命題(寫成“”的形式): (其中用到的論斷都用序號(hào)表示)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:044
(
南通中學(xué)模擬)設(shè)定義在上的函數(shù)y=f(x)的圖象為C,C的端點(diǎn)為點(diǎn)A、B,M是C上的任意一點(diǎn),向量 ,若,記向量.現(xiàn)在定義“函數(shù)y=f(x)在上可在標(biāo)準(zhǔn)k下線性近似”是指恒成立,其中k是一個(gè)人為確定的正數(shù).(1)
證明:0≤λ≤1;(2)
請你給出一個(gè)標(biāo)準(zhǔn)k的范圍,使得[0,1]上的函數(shù)與中有且只有一個(gè)可在標(biāo)準(zhǔn)k下線性近似.查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年四川省資陽市二下學(xué)期期末質(zhì)量檢測理科數(shù)學(xué)試卷(解析版) 題型:填空題
給出以下四個(gè)命題:
①動(dòng)點(diǎn)到兩定點(diǎn)的距離之和為4,則點(diǎn)的軌跡為橢圓;
②設(shè)定義在上的可導(dǎo)函數(shù)滿足,,則一定成立;
③展開式中,含項(xiàng)的系數(shù)為30;
④若,則.
其中,所有真命題的序號(hào)為 。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年四川省高三第6次月考理科數(shù)學(xué)試卷(解析版) 題型:填空題
若函數(shù)在給定區(qū)間M上存在正數(shù)t,使得對于任意,有,且,則稱為M上的t級類增函數(shù)。給出4個(gè)命題
①函數(shù)上的3級類增函數(shù)
②函數(shù)上的1級類增函數(shù)
③若函數(shù)上的級類增函數(shù),則實(shí)數(shù)a的最小值為2
④設(shè)是定義在上的函數(shù),且滿足:1.對任意,恒有;2.對任意,恒有;3. 對任意,,若函數(shù)是上的t級類增函數(shù),則實(shí)數(shù)t的取值范圍為。
以上命題中為真命題的是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖北省高三上學(xué)期期末理科數(shù)學(xué)試卷 題型:解答題
已知函數(shù)其中常數(shù)
(1)當(dāng)時(shí),求函數(shù)的單調(diào)遞增區(qū)間;
(2)當(dāng)時(shí),給出兩類直線:與,其中為常數(shù),判斷這兩類直線中是否存在的切線,若存在,求出相應(yīng)的或的值,若不存在,說明理由.
(3)設(shè)定義在上的函數(shù)在點(diǎn)處的切線方程為,當(dāng)若在內(nèi)恒成立,則稱為函數(shù)的“類對稱點(diǎn)”,當(dāng)時(shí),試問是否存在“類對稱點(diǎn)”,若存在,請至少求出一個(gè)“類對稱點(diǎn)”的橫坐標(biāo),若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com