7.角α的終邊經過點P(x,4),且sinα=$\frac{4}{5}$,則x=±3.

分析 由三角函數(shù)的定義可直接求得sinα.

解答 解:由題意,$\frac{4}{\sqrt{{x}^{2}+16}}$═$\frac{4}{5}$,
∴x=±3.
故答案為±3.

點評 本題考查任意角的三角函數(shù)的定義,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=(sinx+cosx)2+2cos2x(x∈R).
(Ⅰ)求函數(shù)f(x)的最大值及相應的x取值;
(Ⅱ)該函數(shù)的圖象可以由y=sinx(x∈R)的圖象經過怎樣的平移和伸縮變換得到?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知直線l1:ax+4y-c=0與直線l2:6x+8y+3=0平行,且l1與圓M:x2+(y+c)2=1相切,則c的值為( 。
A.±1B.±$\sqrt{2}$C.±2D.±3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=$\frac{x-1}{ax}$-lnx(a≠0).
(Ⅰ)當a=1時,求f(x)在[$\frac{1}{e}$,e]上的最大值和最小值(其中e是自然對數(shù)的底數(shù));
(Ⅱ)求函數(shù)f(x)的單調區(qū)間;
(Ⅲ)求證:ln$\frac{{e}^{2}}{x}$≤$\frac{1+x}{x}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=lnx+$\frac{a}{x}$-2.
(1)求f(x)的單調性;
(2)若方程y=f(x)有兩個根x1,x2(x1<x2),證明:x1+x2>2a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知二次函數(shù)f(x)=ax2+bx+c(a,b,c為常數(shù),且a≠0),滿足條件f(0)=0,f(1+x)=f(1-x)恒成立,且方程f(x)=x有兩個相等的實數(shù)根.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)是否存在實數(shù)m,n(m<n),使f(x)的定義域和值域分別是[m,n]和[3m,3n],如果存在,求出m,n的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.某百貨公司1~6月份的銷售量x與利潤y的統(tǒng)計數(shù)據如表:
月份123456
銷售量x(萬件)1011131286
利潤y(萬元)222529261612
(1)根據2~5月份的數(shù)據,畫出散點圖,求出y關于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(2)若由線性回歸方程得到的估計數(shù)據與剩下的檢驗數(shù)據的誤差均不超過2萬元,則認為得到的線性回歸方程是理想的,試問所得線性回歸方程是否理想?
(參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\stackrel{-2}{x}}$;  $\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知數(shù)列{an}的前n項和為Sn,a1=1,Sn=2an+1,則S5=( 。
A.16B.$\frac{16}{81}$C.$\frac{81}{16}$D.$\frac{1}{16}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)h(x)=ax3-1(a∈R),g(x)=lnx,f(x)=h(x)+3xg(x)(e為自然對數(shù)的底數(shù)).
(I)若f(x)圖象過點(1,-1),求f(x)的單調區(qū)間;
(II)若f(x)在區(qū)間($\frac{1}{e}$,e)上有且只有一個極值點,求實數(shù)a的取值范圍;
(III)函數(shù)F(x)=(a-$\frac{1}{3}$)x3+$\frac{1}{2}$x2g(a)-h(x)-1,當a>e${\;}^{\frac{10}{3}}$時,函數(shù)F(x)過點A(1,m)的切線至少有2條,求實數(shù)m的值.

查看答案和解析>>

同步練習冊答案