分析 先根據(jù)條件可求出$\overrightarrow{OM}•\overrightarrow{ON}=\frac{1}{2}$,而由MP⊥MN即可得到$\overrightarrow{MP}•\overrightarrow{MN}=0$,而可求得$\overrightarrow{MP}=(x-1)\overrightarrow{OM}+y\overrightarrow{ON}$,$\overrightarrow{MN}=\overrightarrow{ON}-\overrightarrow{OM}$,代入$\overrightarrow{MP}•\overrightarrow{MN}=0$并進(jìn)行數(shù)量積的運(yùn)算即可得到$1-x+\frac{1}{2}(x-y-1)+y=0$,從而便可求出x-y的值.
解答 解:根據(jù)條件:$\overrightarrow{OM}•\overrightarrow{ON}=1•1•cos60°=\frac{1}{2}$,且MP⊥MN;
∴$\overrightarrow{MP}•\overrightarrow{MN}$=$(\overrightarrow{OP}-\overrightarrow{OM})•(\overrightarrow{ON}-\overrightarrow{OM})$
=$[(x-1)\overrightarrow{OM}+y\overrightarrow{ON}]•(\overrightarrow{ON}-\overrightarrow{OM})$
=$(1-x){\overrightarrow{OM}}^{2}+(x-y-1)\overrightarrow{OM}•\overrightarrow{ON}$$+y{\overrightarrow{ON}}^{2}$
=$1-x+\frac{1}{2}(x-y-1)+y$
=0;
∴x-y=1.
故答案為:1.
點(diǎn)評(píng) 考查向量數(shù)量積的運(yùn)算及計(jì)算公式,向量垂直的充要條件,向量的數(shù)乘運(yùn)算.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{72}{13}$ | B. | $\frac{135}{22}$ | C. | $\frac{79}{14}$ | D. | $\frac{142}{23}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 8 | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-2$\sqrt{3}$] | B. | [2,+∞) | C. | (-∞,-2$\sqrt{3}$]∪[2$\sqrt{3}$,+∞) | D. | (-∞,-2$\sqrt{3}$)∪(2$\sqrt{3}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 10 | B. | 12 | C. | 14 | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 雙曲線的一部分 | B. | 橢圓的一部分 | C. | 直線的一部分 | D. | 無法確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com