證明:(I)由S
n+2n=2a
n得 S
n=2a
n-2n
當n∈N
*時,S
n=2a
n-2n,①
當n=1 時,S
1=2a
1-2,則a
1=2,
則當n≥2,n∈N
*時,S
n-1=2a
n-1-2(n-1).②
①-②,得a
n=2a
n-2a
n-1-2,即a
n=2a
n-1+2,∴a
n+2=2(a
n-1+2)
∴數(shù)列{a
n+2}是以a
1+2為首項,以2為公比的等比數(shù)列.
∴a
n+2=4•2
n-1,
∴a
n=2
n+1-2.
(Ⅱ)由b
n=log
2(a
n+2)=log22n+1=n+1,
∴
=
=
∴
.
分析:(I)由S
n+2n=2a
n得S
n=2a
n-2n,再寫一式,兩式相減,即可證數(shù)列{a
n+2}是以a
1+2為首項,以2為公比的等比數(shù)列,從而可求數(shù)列{a
n}的通項公式a
n;
(Ⅱ)由b
n=log
2(a
n+2)=log22n+1=n+1,則
=
=
,由此可證結(jié)論.
點評:本題考查數(shù)列遞推式,考查等比數(shù)列的證明,考查數(shù)列的通項,考查不等式的證明,確定數(shù)列的通項,正確放縮是關鍵.