(2007•楊浦區(qū)二模)在△ABC中,a、b、c分別是三內(nèi)角A、B、C所對應(yīng)的三邊,已知b2=a2-c2+bc,則cosA的值是
1
2
1
2
分析:由余弦定理cosA=
b2+c2-a2
2bc
,結(jié)合已知b2=a2-c2+bc可求cosA,進(jìn)而可求A
解答:解:∵b2=a2-c2+bc
∴b2+c2-a2=bc
由余弦定理可得,cosA=
b2+c2-a2
2bc
=
bc
2bc
=
1
2

故答案為
1
2
點(diǎn)評:本題主要考查了余弦定理余弦定理cosA=
b2+c2-a2
2bc
的應(yīng)用,屬于基礎(chǔ)試題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2007•楊浦區(qū)二模)已知函數(shù)f(n)=log(n+1)(n+2)(n為正整數(shù)),若存在正整數(shù)k滿足:f(1)•f(2)•f(3)…f(n)=k,那么我們將k叫做關(guān)于n的“對整數(shù)”.當(dāng)n∈[1,100]時(shí),則“對整數(shù)”的個(gè)數(shù)為
5
5
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•楊浦區(qū)二模)同時(shí)滿足三個(gè)條件:①有反函數(shù);②是奇函數(shù);③其定義域與值域相等的函數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•楊浦區(qū)二模)(文)設(shè)復(fù)數(shù)z滿足z+
1
z
=
1
2
,求z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•楊浦區(qū)二模)已知正四棱錐的底面面積為4cm2,體積為4cm3,設(shè)它的側(cè)面上的斜高與底面所成角的大小為θ,則sinθ的值是
3
10
10
3
10
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•楊浦區(qū)二模)直線2x-y+1=0的傾斜角為
arctan2
arctan2
.(用反三角函數(shù)表示)

查看答案和解析>>

同步練習(xí)冊答案