已知點(diǎn)在直線上,且滿足.則點(diǎn)的坐標(biāo)為            .

 

【答案】

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)如圖所示,已知圓

 
為圓上一動(dòng)點(diǎn),點(diǎn)P在AM上,點(diǎn)N在CM上,且滿

的軌跡為曲線E.

(1)求曲線E的方程;(II)若過(guò)定點(diǎn)F(0,2)

的直線交曲線E于不同的兩點(diǎn)G、H(點(diǎn)G在點(diǎn)F、H之間),

且滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年遼寧沈陽(yáng)二中等重點(diǎn)中學(xué)協(xié)作體高三領(lǐng)航高考預(yù)測(cè)十二理數(shù)學(xué)卷(解析版) 題型:解答題

(本題滿分為12分)

已知橢圓中心在原點(diǎn),焦點(diǎn)在y軸上,焦距為4,離心率為

(I)求橢圓方程;

(II)設(shè)橢圓在y軸的正半軸上的焦點(diǎn)為M,又點(diǎn)A和點(diǎn)B在橢圓上,且M分有向線段所成的比為2,求線段AB所在直線的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年甘肅省高三上學(xué)期第一次檢測(cè)理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分為12分)已知橢圓中心在原點(diǎn),焦點(diǎn)在y軸上,焦距為4,離心率為

(I)求橢圓方程;

(II)設(shè)橢圓在y軸的正半軸上的焦點(diǎn)為M,又點(diǎn)A和點(diǎn)B在橢圓上,且M分有向線段所成的比為2,求線段AB所在直線的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省英文學(xué)校高三下學(xué)期第一次月考理科數(shù)學(xué) 題型:解答題

.(本小題滿分14分)

                      已知橢圓、拋物線的焦點(diǎn)均在軸上,的中心和的頂點(diǎn)均為原點(diǎn),從每條曲

線上取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:

3

2

4

0

4

                      (Ⅰ)求的標(biāo)準(zhǔn)方程;

                      (Ⅱ)請(qǐng)問(wèn)是否存在直線滿足條件:①過(guò)的焦點(diǎn);②與交不同兩點(diǎn)且滿

?若存在,求出直線的方程;若不存在,說(shuō)明理由。

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案