設(shè)數(shù)列{an}是一個公差不為零的等差數(shù)列,已知它的前10項和為110,且a1,a2,a4成等比數(shù)列.
(1)求數(shù)列{an}的通項公式
(2)若bn=(n+1)an求數(shù)列{
1bn
}
的前n項和Tn
分析:(1)利用等差數(shù)列的前10項和為110,且a1,a2,a4成等比數(shù)列,建立方程,求出首項與公差,即可求數(shù)列{an}的通項公式;
(2)利用裂項法,可求數(shù)列{
1
bn
}
的前n項和Tn
解答:解:(1)∵a1,a2,a4成等比數(shù)列,∴a22=a1a4
∵{an}是等差數(shù)列,∴(a1+d)2=a1(a1+3d),化簡得a1=d
∵S10=110,∴10a1+45d=110
a1=d,代入上式得55d=110,∴d=2,an=a1+(n-1)d=2n
∴數(shù)列{an}的通項公式為an=2n;
(2)
1
bn
=
1
2n(n+1)
=
1
2
1
n
-
1
n+1

∴Tn=
1
2
1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
)=
1
2
(1-
1
n+1
)
=
n
2n+2
點評:本題主要考查等差數(shù)列及其通項公式,等差數(shù)列前n項和公式以及等比中項等基礎(chǔ)知識,考查裂項法的運用,考查運算能力和推理論證能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

從數(shù)列{an}中取出部分項,并將它們按原來的順序組成一個數(shù)列,稱之為數(shù)列{an}的一個子數(shù)列.設(shè)數(shù)列{an}是一個首項為a1、公差為d(d≠0)的無窮等差數(shù)列.
(1)若a1,a2,a5成等比數(shù)列,求其公比q.
(2)若a1=7d,從數(shù)列{an}中取出第2項、第6項作為一個等比數(shù)列的第1項、第2項,試問該數(shù)列是否為{an}的無窮等比子數(shù)列,請說明理由.
(3)若a1=1,從數(shù)列{an}中取出第1項、第m(m≥2)項(設(shè)am=t)作為一個等比數(shù)列的第1項、第2項,試問當且僅當t為何值時,該數(shù)列為{an}的無窮等比子數(shù)列,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從數(shù)列{an}中取出部分項,并將它們按原來的順序組成一個數(shù)列,稱為數(shù)列{an}的一個子數(shù)列,設(shè)數(shù)列{an}是一個首項為a1,公差為d(d≠0)的無窮等差數(shù)列.
(1)若a1,a2,a5為公比為q的等比數(shù)列,求公比q的值;
(2)若a1=1,d=2,請寫出一個數(shù)列{an}的無窮等比子數(shù)列{bn};
(3)若a1=7d,{cn}是數(shù)列{an}的一個無窮子數(shù)列,當c1=a2,c2=a6時,試判斷{cn}能否是{an}的無窮等比子數(shù)列,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•奉賢區(qū)二模)數(shù)列{an} 的各項均為正數(shù),a1=t,k∈N*,k≥1,p>0,an+an+1+an+2+…+an+k=6pn
(1)當k=1,p=5時,若數(shù)列{an}是成等比數(shù)列,求t的值;
(2)當t=1,k=1時,設(shè)Tn=a1+
a2
p
+
a3
p2
+…+
an-1
pn-1
+
an
pn-1
,參照高二教材書上推導等比數(shù)列前n項求和公式的推導方法,求證:數(shù)列
1+p
p
Tn-
an
pn
-6n
是一個常數(shù);
(3)設(shè)數(shù)列{an}是一個等比數(shù)列,求t(用p,k的代數(shù)式表示).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)數(shù)列{an}是一個無窮數(shù)列,記Tn=
n+2i=1
2i-1ai+2a1-a3-2n+2an+1
,n∈N*
(1)若{an}是等差數(shù)列,證明:對于任意的n∈N*,Tn=0;
(2)對任意的n∈N*,若Tn=0,證明:{an}是等差數(shù)列.

查看答案和解析>>

同步練習冊答案