如圖,拋物線關(guān)于軸對(duì)稱,它的頂點(diǎn)在坐標(biāo)原點(diǎn),點(diǎn)、、均在拋物線上.
(1)寫出該拋物線的方程及其準(zhǔn)線方程;
(2)當(dāng)與的斜率存在且傾斜角互補(bǔ)時(shí),求的值及直線的斜率.
(1)故所求拋物線的方程是,準(zhǔn)線方程是;(2).
解析試題分析:(I)設(shè)出拋物線的方程,把點(diǎn)P代入拋物線求得p則拋物線的方程可得,進(jìn)而求得拋物線的準(zhǔn)線方程.
(2)設(shè)直線PA的斜率為,直線PB的斜率為,則可分別表示和,根據(jù)傾斜角互補(bǔ)可知,進(jìn)而求得的值,把A,B代入拋物線方程兩式相減后即可求得直線AB的斜率.
試題解析:(I)由已知條件,可設(shè)拋物線的方程為
因?yàn)辄c(diǎn)在拋物線上,所以,得. 2分
故所求拋物線的方程是, 準(zhǔn)線方程是. 4分
(2)設(shè)直線的方程為,
即:,代入,消去得:
. 5分
設(shè),由韋達(dá)定理得:,即:. 7分
將換成,得,從而得:, 9分
直線的斜率. 12分.
考點(diǎn):拋物線的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)拋物線:的準(zhǔn)線與軸交于點(diǎn),焦點(diǎn)為;橢圓以和為焦點(diǎn),離心率.設(shè)是與的一個(gè)交點(diǎn).
(1)求橢圓的方程.
(2)直線過的右焦點(diǎn),交于兩點(diǎn),且等于的周長,求的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓短半軸長為半徑的圓與直線相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過右焦點(diǎn)作斜率為的直線交曲線于、兩點(diǎn),且,又點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為點(diǎn),試問、、、四點(diǎn)是否共圓?若共圓,求出圓心坐標(biāo)和半徑;若不共圓,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓的右焦點(diǎn)與拋物線的焦點(diǎn)重合,過且于x軸垂直的直線與橢圓交于S,T,與拋物線交于C,D兩點(diǎn),且
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)P為橢圓上一點(diǎn),若過點(diǎn)M(2,0)的直線與橢圓相交于不同兩點(diǎn)A和B,且滿足(O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的短半軸長為,動(dòng)點(diǎn)在直線(為半焦距)上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求以為直徑且被直線截得的弦長為的圓的方程;
(3)設(shè)是橢圓的右焦點(diǎn),過點(diǎn)作的垂線與以為直徑的圓交于點(diǎn),
求證:線段的長為定值,并求出這個(gè)定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知命題:,命題:方程表示焦點(diǎn)在軸上的雙曲線.
(1)命題為真命題,求實(shí)數(shù)的取值范圍;
(2)若命題“”為真,命題“”為假,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的由頂點(diǎn)為A,右焦點(diǎn)為F,直線與x軸交于點(diǎn)B且與直線交于點(diǎn)C,點(diǎn)O為坐標(biāo)原點(diǎn),,過點(diǎn)F的直線與橢圓交于不同的兩點(diǎn)M,N.
(1)求橢圓的方程;
(2)求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:=1(a>b>0)的離心率e=,一條準(zhǔn)線方程為x=
(1)求橢圓C的方程;
(2)設(shè)G、H為橢圓C上的兩個(gè)動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),且OG⊥OH.
①當(dāng)直線OG的傾斜角為60°時(shí),求△GOH的面積;
②是否存在以原點(diǎn)O為圓心的定圓,使得該定圓始終與直線GH相切?若存在,請(qǐng)求出該定圓方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓經(jīng)過點(diǎn),且兩焦點(diǎn)與短軸的兩個(gè)端點(diǎn)的連線構(gòu)成一正方形.
(1)求橢圓的方程;
(2)直線與橢圓交于,兩點(diǎn),若線段的垂直平分線經(jīng)過點(diǎn),求
(為原點(diǎn))面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com