分析 (1)利用三角恒等變換化簡函數(shù)f(x)的解析式,再利用正弦函數(shù)的單調性求得函數(shù)f(x)的單調減區(qū)間.
(2)利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律求得g(x)的解析式,再根據(jù)g(x)在[0,b]上至少含有8個零點,求得b的最小值.
解答 解:(1)∵函數(shù)f(x)=2sinωxcosωx+2$\sqrt{3}$sin2ωx-$\sqrt{3}$=sin2ωx-$\sqrt{3}$cos2ωx=2sin(2ωx-$\frac{π}{3}$)(ω>0)
的最小正周期為$\frac{2π}{2ω}$=π,∴ω=1,f(x)=2sin(2x-$\frac{π}{3}$).
令2kπ+$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,求得kπ+$\frac{5π}{12}$≤x≤kπ+$\frac{11π}{12}$,故函數(shù)的減區(qū)間為[kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$],k∈Z.
(2)將函數(shù)f(x)的圖象向左平移$\frac{π}{6}$個單位,再向上平移1個單位,得到y(tǒng)=g(x)=2sin(2x+$\frac{π}{3}$-$\frac{π}{3}$)+1=2sin2x+1的圖象,
若y=g(x)在[0,b]上至少含有8個零點,
令g(x)=0,求得sin2x=-$\frac{1}{2}$,即2x=2kπ+$\frac{7π}{6}$,或 2x=2kπ+$\frac{11π}{6}$ k∈Z,
即x=kπ+$\frac{7π}{12}$,或x=kπ+$\frac{11π}{12}$,
故k=0,1,2,3,故b的最小值即函數(shù)g(x)的第8個零點(從小到大排列),即 3π+$\frac{11π}{12}$=$\frac{47π}{12}$.
點評 本題主要考查三角恒等變換,正弦函數(shù)的單調性、零點,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 直角三角形 | B. | 鈍角三角形 | C. | 銳角三角形 | D. | 不確定 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | m⊥n | B. | m,n成60°角 | C. | m∥n | D. | m,n成30°角 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | $\frac{5}{3}$ | C. | 3 | D. | 5 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com