A. | $(-\frac{5}{2},0)$ | B. | $(\frac{1}{6},0)$ | C. | $(-\frac{1}{2},0)$ | D. | $(-\frac{11}{6},0)$ |
分析 由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值,可得g(x)的解析式,再利用正弦函數(shù)的圖象的對稱性,求得函數(shù)g(x)=Acos(φx+ω)圖象的一個對稱中心.
解答 解:根據(jù)函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分圖象,
可得A=2$\sqrt{3}$,$\frac{2π}{ω}$=2(6+2),∴ω=$\frac{π}{8}$.
再根據(jù)五點(diǎn)法作圖可得$\frac{π}{8}$•6+φ=π,∴φ=$\frac{π}{4}$,∴f(x)=2$\sqrt{3}$sin($\frac{π}{8}$x+$\frac{π}{4}$).
則函數(shù)g(x)=Acos(φx+ω)=2$\sqrt{3}$cos($\frac{π}{4}$x+$\frac{π}{8}$)圖象的一個對稱中心可能(-$\frac{1}{2}$,0),
故選:C.
點(diǎn)評 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值,正弦函數(shù)的圖象的對稱性,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b+\overrightarrow c$ | B. | $\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b+\overrightarrow c$ | C. | $\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b+\overrightarrow c$ | D. | $-\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b+\overrightarrow c$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $g(x)=2sin(\frac{x}{3}-\frac{π}{4})-2$ | B. | $g(x)=2sin(\frac{x}{3}+\frac{π}{4})+2$ | C. | $g(x)=2sin(\frac{x}{3}-\frac{π}{12})+2$ | D. | $g(x)=2sin(\frac{x}{3}-\frac{π}{12})-2$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-1≤x≤2} | B. | {-1,0,1,2} | C. | {1,2} | D. | {0,1,2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 該金錘中間一尺重3斤 | |
B. | 中間三尺的重量和是頭尾兩尺重量和的3倍 | |
C. | 該金錘的重量為15斤 | |
D. | 該金錘相鄰兩尺的重量之差的絕對值為0.5斤 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{ln10}$ | B. | ln10 | C. | lne | D. | $\frac{1}{lne}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com