【題目】“禿發(fā)”是一種常見(jiàn)的毛發(fā)疾病,隨著發(fā)病人群年齡結(jié)構(gòu)的年變化,逐漸引起了社會(huì)的廣泛關(guān)注.一個(gè)人出生時(shí)頭發(fā)數(shù)量約為100000根,數(shù)學(xué)徐老師建立了“禿發(fā)”函數(shù)模型作預(yù)估:一個(gè)人歲時(shí)的頭發(fā)根數(shù)為,其中稱(chēng)為“脫發(fā)指數(shù)”.

1)杜老師5歲時(shí)有74375根頭發(fā),請(qǐng)依據(jù)模型求出杜老師的“脫發(fā)指數(shù)”的值;

2)徐老師的學(xué)生認(rèn)為“禿發(fā)”函數(shù)模型中有兩個(gè)缺點(diǎn):①頭發(fā)的根數(shù)應(yīng)該為整數(shù);②頭發(fā)的根數(shù)不能為負(fù)數(shù),徐老師感覺(jué)很有道理,將模型作了兩處修正,請(qǐng)寫(xiě)出修正后(1)問(wèn)中杜老師的“禿發(fā)”函數(shù)模型,并求出杜老師幾歲時(shí)頭發(fā)最多.

【答案】1;(2,杜老師4歲時(shí)頭發(fā)最多.

【解析】

1)將代入求解即可求出的值;

2)引入求整數(shù)的符號(hào),且將函數(shù)寫(xiě)成分段函數(shù)的形式,當(dāng)函數(shù)值為負(fù)數(shù)時(shí)變?yōu)槌?shù)0即可,最后結(jié)合基本不等式求出即可.

1)依題意,當(dāng)時(shí),,

解得,,所以,杜老師的“脫發(fā)指數(shù)”的值為3125;

2)依題意可得,,

其中表示不超過(guò)x的最大整數(shù),

,

當(dāng)且僅當(dāng)時(shí),等號(hào)成立,此時(shí),.

即杜老師4歲時(shí)頭發(fā)最多.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐,底面為正方形,且底面過(guò)的平面與側(cè)面的交線為,且滿(mǎn)足表示的面積.

(1)證明: 平面

(2)當(dāng)時(shí),二面角的余弦值為的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著共享單車(chē)的成功運(yùn)營(yíng),更多的共享產(chǎn)品逐步走入大家的世界,共享汽車(chē)、共享籃球、共享充電寶等各種共享產(chǎn)品層出不窮.某公司隨機(jī)抽取1000人對(duì)共享產(chǎn)品是否對(duì)日常生活有益進(jìn)行了問(wèn)卷調(diào)查,并對(duì)參與調(diào)查的1000人中的性別以及意見(jiàn)進(jìn)行了分類(lèi),得到的數(shù)據(jù)如下表所示:

總計(jì)

認(rèn)為共享產(chǎn)品對(duì)生活有益

400

300

700

認(rèn)為共享產(chǎn)品對(duì)生活無(wú)益

100

200

300

總計(jì)

500

500

1000

(1)根據(jù)表中的數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為共享產(chǎn)品的態(tài)度與性別有關(guān)系?

(2)為了答謝參與問(wèn)卷調(diào)查的人員,該公司對(duì)參與本次問(wèn)卷調(diào)查的人員隨機(jī)發(fā)放1張超市的購(gòu)物券,購(gòu)物券金額以及發(fā)放的概率如下:

購(gòu)物券金額

20元

50元

概率

現(xiàn)有甲、乙兩人領(lǐng)取了購(gòu)物券,記兩人領(lǐng)取的購(gòu)物券的總金額為,求的分布列和數(shù)學(xué)期望.

參考公式:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市小型機(jī)動(dòng)車(chē)駕照科二考試中共有5項(xiàng)考察項(xiàng)目,分別記作,⑤.

1)某教練將所帶10名學(xué)員科二模擬考試成績(jī)進(jìn)行統(tǒng)計(jì)(如圖1所示),并打算從恰有2項(xiàng)成績(jī)不合格的學(xué)員中任意抽出2人進(jìn)行補(bǔ)測(cè)(只測(cè)不合格的項(xiàng)目),求補(bǔ)測(cè)項(xiàng)目種類(lèi)不超過(guò)3項(xiàng)的概率;

2)如圖2,某次模擬演練中,教練要求學(xué)員甲倒車(chē)并轉(zhuǎn)向90°,在汽車(chē)邊緣不壓射線AC與射線BD的前提下,將汽車(chē)駛?cè)胫付ǖ耐\?chē)位. 根據(jù)經(jīng)驗(yàn),學(xué)員甲轉(zhuǎn)向90°后可使車(chē)尾邊緣完全落在線段CD,且位于CD內(nèi)各處的機(jī)會(huì)相等.CA="BD=0.3m," AB="2.4m." 汽車(chē)寬度為1.8m, 求學(xué)員甲能按教練要求完成任務(wù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,焦點(diǎn)在軸上的橢圓經(jīng)過(guò)點(diǎn),其中為橢圓的離心率.過(guò)點(diǎn)作斜率為的直線交橢圓兩點(diǎn)(軸下方).

(1)求橢圓的方程;

(2)過(guò)原點(diǎn)且平行于的直線交橢圓于點(diǎn), ,求的值;

(3)記直線軸的交點(diǎn)為.若,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)是定義域?yàn)?/span>的奇函數(shù).

(1)確定的值;

(2)若,函數(shù),求的最小值;

(3)若,是否存在正整數(shù),使得對(duì)恒成立?若存在,請(qǐng)求出所有的正整數(shù);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方體中,與平面所成角的正弦值為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿(mǎn)分12)

已知函數(shù),.

)求的定義域;

)判斷的奇偶性并予以證明;

)當(dāng)時(shí),求使的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),并且當(dāng)x∈(0,+∞)時(shí),f(x)=2x.

(1)f(log2)的值;

(2)f(x)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案