【題目】己知三邊,的長都是整數(shù),,如果,則符合條件的三角形的個數(shù)是(  

A.B.C.D.

【答案】D

【解析】

根據(jù)題意,可取的值為1、23、…25,由三角形的三邊關系,有,對分情況討論,分析可得可取的情況,即可得這種情況下符合條件的三角形的個數(shù),由分類計數(shù)原理,結(jié)合等差數(shù)列的前項和公式,計算可得答案.

解:根據(jù)題意,可取的值為12、3…25,
根據(jù)三角形的三邊關系,有,
時,有25≤26,則25,有1種情況,
時,有25≤27,則25、26,有2種情況,
時,有25≤28,則25、2627,有3種情況,
時,有25≤29,則2526、2728,有4種情況,

時,有有25≤50,則25、2627、28…49,有25種情況,
則符合條件的三角形共有123425;
故選:D

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在著名的漢諾塔問題中,有三根高度相同的柱子和一些大小及顏色各不相同的圓盤,三根柱子分別為起始柱、輔助柱及目標柱.已知起始柱上套有個圓盤,較大的圓盤都在較小的圓盤下面.現(xiàn)把圓盤從起始柱全部移到目標柱上,規(guī)則如下:每次只能移動一個圓盤,且每次移動后,每根柱上較大的圓盤不能放在較小的圓盤上面,規(guī)定一個圓盤從任一根柱上移動到另一根柱上為一次移動.若將個圓盤從起始柱移動到目標柱上最少需要移動的次數(shù)記為,則( )

A. 33B. 31C. 17D. 15

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,,ACAB邊上的中線長之和等于9

1)求重心M的軌跡方程;

2)求頂點A的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,F是橢圓的左焦點,橢圓的離心率為,B為橢圓的左頂點和上頂點,點Cx軸上,的外接圓M恰好與直線相切.

1求橢圓的方程;

2過點C的直線與已知橢圓交于P,Q兩點,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

是否存在,使得,按照某種順序成等差數(shù)列?若存在,請確定的個數(shù);若不存在,請說明理由;

求實數(shù)與正整數(shù),使得內(nèi)恰有個零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在棱長為的正方體中,,,分別是棱、所在直線上的動點:

1)求的取值范圍:

2)若為面內(nèi)的一點,且,,求的余弦值:

3)若分別是所在正方形棱的中點,試問在棱上能否找到一點,使平面?若能,試確定點的位置,若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,過點向圓引兩條切線,切點為,,若點的坐標為,則直線的方程為____________;若為直線上一動點,則直線經(jīng)過定點__________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列{an}中,a1=60,且an+1=an+3,則這個數(shù)列的前40項的絕對值之和為______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,、是雙曲線的兩個焦點,一條直線與雙曲線的右支相切,且分別交兩條漸近線于AB.又設O為坐標原點,求證: 1 、、AB四點在同一個圓上.

查看答案和解析>>

同步練習冊答案