18.?dāng)?shù)列{an}的通項(xiàng)公式an=$\frac{1}{\sqrt{n}+\sqrt{n+1}}$,若{an}的前n項(xiàng)和為24,則n=624.

分析 an=$\frac{1}{\sqrt{n}+\sqrt{n+1}}$=$\sqrt{n+1}-\sqrt{n}$,利用“裂項(xiàng)求和”方法即可得出.

解答 解:an=$\frac{1}{\sqrt{n}+\sqrt{n+1}}$=$\sqrt{n+1}-\sqrt{n}$,
∴{an}的前n項(xiàng)和=$(\sqrt{2}-1)$+$(\sqrt{3}-\sqrt{2})$+…+($\sqrt{n+1}-\sqrt{n}$)=$\sqrt{n+1}$-1=24,
解得n=624.
故答案為:624.

點(diǎn)評(píng) 本題考查了“裂項(xiàng)求和”方法、根式的運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.過橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1右焦點(diǎn)作一條斜率為$\frac{1}{2}$的直線與橢圓交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),求△OAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.將函數(shù)$y=f'(x)cos(x-\frac{π}{2})$的圖象先向左平移$\frac{π}{4}$個(gè)單位,然后向上平移1個(gè)單位,得到函數(shù)y=2cos2x的圖象,則$f'(x-\frac{7π}{2})$是(  )
A.-2sinxB.-2cosxC.2sinxD.2cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.0.5-1+40.5=4,lg2+lg5-($\frac{π}{23}$)0=0,10lg2=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.2015年“雙11”網(wǎng)購在狂歡節(jié)后,某教師對(duì)本班42名學(xué)生網(wǎng)上購物情況進(jìn)行調(diào)查,經(jīng)統(tǒng)計(jì)得到如下的x×2列聯(lián)表:(單位:人)
電子產(chǎn)品服飾總計(jì)
男生16824
女生61218
總計(jì)222042
(1)據(jù)此判斷能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為購買“電子產(chǎn)品”或“服飾”與性別有關(guān)?
下面是臨界值表供參考:
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
(2)在統(tǒng)計(jì)結(jié)果中,按性別用分層抽樣的方法抽取7位學(xué)生進(jìn)行問卷調(diào)查.
①求抽取的男生和女生的人數(shù);
②再從這7位學(xué)生中選取2位進(jìn)行面對(duì)面的交流,求這2位學(xué)生都是男生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=ax+1n(x-1),其中a為常數(shù).
(1)若h(x)=f(x+1),試討論h(x)的單調(diào)區(qū)間;
(2)若$a=\frac{1}{1-e}$時(shí),存在x使得不等式$\sqrt{{f^2}(x)}-\frac{e}{e-1}≤\frac{21nx+bx}{2x}$成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)函數(shù)f(x)=(1-2x)10,則f′(1)=20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.為了判斷高中生的文理科選修是否與性別有關(guān),隨機(jī)調(diào)查了50名學(xué)生,得到如下2×2列聯(lián)表:
理科文科
1410
620
能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為選修文科與性別有關(guān)?
($P({K^2}≥3.841)≈0.05,P({K^2}≥5.024)≈0.025,{K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在x軸上有一點(diǎn)P,它與點(diǎn)P1(4,1,2)之間的距離為$\sqrt{30}$,則點(diǎn)P的坐標(biāo)是(9,0,0)或(-1,0,0).

查看答案和解析>>

同步練習(xí)冊答案