將函數(shù)y=3cos2x的圖象向右平移
π
12
個單位長度,再將所得圖象的所有點的橫坐標(biāo)縮短到原來的
1
2
倍(縱坐標(biāo)不變),得到的函數(shù)解析式為
 
考點:余弦函數(shù)的圖象
專題:三角函數(shù)的圖像與性質(zhì)
分析:利用導(dǎo)公式以及函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可以求得變換后的函數(shù)的解析式.
解答: 解:將函數(shù)y=3cos2x的圖象向右平移
π
12
個單位長度,可得函數(shù)y=3cos[2(x-
π
12
)]=3cos(2x-
π
6
)的圖象;
再將所得圖象的所有點的橫坐標(biāo)縮短到原來的
1
2
倍(縱坐標(biāo)不變),得到的函數(shù)y=3cos(4x-
π
6
)的圖象,
故答案為:y=3cos(4x-
π
6
).
點評:本題主要考查誘導(dǎo)公式的應(yīng)用,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O:x2+y2=50與直線l:x-2y-5=0相交于A,B兩點(點A的橫坐標(biāo)大于點B的橫坐標(biāo)),求:
(1)A,B的坐標(biāo);
(2)△ABO的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩點A(-2,-2)、B(3,7),則線段AB的垂直平分線的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法正確的有
 

(1)函數(shù)y=f(1+x)與y=f(1-x)圖象關(guān)于x=0對稱;
(2)把函數(shù)y=f(-3x)按向量
a
=(
1
3
,0)平移后得到新函數(shù)y=f(1-3x);
(3)若函數(shù)y=f(3x+1)圖象關(guān)于x=1對稱,則y=f(1+x)圖象關(guān)于x=
1
3
對稱;
(4)若對任意x∈R有f(1+x)=f(x-1)成立,則f(x)的圖象關(guān)于x=1對稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義函數(shù)d(x)=
1,  x∈Q
0,  x∉Q
,f(x)=1gx,那么下列命題中正確的序號是
 
.(把所有可能的圖的序號都填上).
①函數(shù)d(x)為偶函數(shù);②函數(shù)d(x)為周期函數(shù),且任何非零實數(shù)均為其周期;
③方程d(x)=f(x)有兩個不同的根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2+bln(x+1),其中b≠0.
(1)當(dāng)b=1時,求曲線y=f(x)在點(0,0)處的切線方程;
(2)討論函數(shù)f(x)的單調(diào)性;
(3)當(dāng)n∈N*,且n≥2時證明不等式:ln[(
1
2
+1)(
1
3
+1)…(
1
n
+1)]+
1
23
+
1
33
+…+
1
n3
1
2
-
1
n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了得到y(tǒng)=3sin(2x+
π
5
)的圖象,只需把y=3sin(x+
π
5
)圖象上的所有點的( 。
A、縱坐標(biāo)伸長到原來的2倍,橫坐標(biāo)不變
B、橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變
C、縱坐標(biāo)縮短到原來的
1
2
倍,橫坐標(biāo)不變
D、橫坐標(biāo)縮短到原來的
1
2
倍,縱坐標(biāo)不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和為Sn,若對任意的n∈N*,2Sn是an+1和an的等差中項,則an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:x>0,y>0,q:xy>0,則命題p是命題q的( 。l件.
A、充分不必要
B、必要不充分
C、既不充分又不必要
D、充要

查看答案和解析>>

同步練習(xí)冊答案