【題目】已知點(diǎn)A(x1 , f(x1)),B(x2 , f(x2))是函數(shù)f(x)=2sin(ωx+φ) 圖象上的任意兩點(diǎn),且角φ的終邊經(jīng)過點(diǎn) ,若|f(x1)﹣f(x2)|=4時(shí),|x1﹣x2|的最小值為 .
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)當(dāng) 時(shí),不等式mf(x)+2m≥f(x)恒成立,求實(shí)數(shù)m的取值范圍.
【答案】
(1)解:角φ的終邊經(jīng)過點(diǎn) ,
∴ ,
∵ ,∴ .
由|f(x1)﹣f(x2)|=4時(shí),|x1﹣x2|的最小值為 ,得 ,
即 ,∴ω=3
∴
(2)解:由 ,
可得 ,
∴函數(shù)f(x)的單調(diào)遞增區(qū)間為 k∈z
(3)解:當(dāng) 時(shí), ,
于是,2+f(x)>0,
∴mf(x)+2m≥f(x)等價(jià)于
由 ,得 的最大值為
∴實(shí)數(shù)m的取值范圍是 .
【解析】(1)利用三角函數(shù)的定義求出φ的值,由|f(x1)﹣f(x2)|=4時(shí),|x1﹣x2|的最小值為 ,可得函數(shù)的周期,從而可求ω,進(jìn)而可求函數(shù)f(x)的解析式;(2)利用正弦函數(shù)的單調(diào)增區(qū)間,可求函數(shù)f(x)的單調(diào)遞增區(qū)間;(3)當(dāng) 時(shí),不等式mf(x)+2m≥f(x)恒成立,等價(jià)于 ,由此可求實(shí)數(shù)m的取值范圍.
【考點(diǎn)精析】掌握三角函數(shù)的最值是解答本題的根本,需要知道函數(shù),當(dāng)時(shí),取得最小值為;當(dāng)時(shí),取得最大值為,則,,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中,將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個(gè)面都為直角三角形的四面體稱之為鱉臑,如圖,網(wǎng)格紙上正方形小格的邊長為,圖中粗線畫出的是某幾何體毛坯的三視圖,第一次切削,將該毛坯得到一個(gè)表面積最大的長方體,第二次切削沿長方體的對(duì)角面刨開,得到兩個(gè)三棱柱,第三次切削將兩個(gè)三棱柱分別沿棱和表面的對(duì)角線刨開得到兩個(gè)鱉臑和兩個(gè)陽馬,則陽馬與鱉臑的體積之比為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中常數(shù).
(Ⅰ)當(dāng),求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)設(shè)定義在上的函數(shù)在點(diǎn)處的切線方程為, 若在內(nèi)恒成立,則稱為函數(shù)的“類對(duì)稱點(diǎn)”,當(dāng)時(shí),試問是否存在“類對(duì)稱點(diǎn)”,若存在,請(qǐng)求出一個(gè)“類對(duì)稱點(diǎn)”的橫坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中新網(wǎng)2016年12月19日電根據(jù)預(yù)報(bào),今天開始霧霾范圍將進(jìn)一步擴(kuò)大, 日夜間至日,霧霾嚴(yán)重時(shí)段部分地區(qū)濃度峰值會(huì)超過微克/立方米. 而此輪霧霾最嚴(yán)重的時(shí)段,將有包括京津冀、山西、陜西、河南等個(gè)省市在內(nèi)的地區(qū)被霧霾籠罩. 是指大氣中直徑小于或等于微米的顆粒物,也稱為可人肺顆粒物. 日均值在微克/立方米以下空氣質(zhì)量為一級(jí);在微克/立方米微克/立方米之間空氣質(zhì)量為二級(jí);在微克/立方米以上空氣質(zhì)量為超標(biāo).某地區(qū)在2016年12月19日至28日每天的監(jiān)測數(shù)據(jù)的莖葉圖如下:
(1)求出這些數(shù)據(jù)的中位數(shù)與極差;
(2)從所給的空氣質(zhì)量不超標(biāo)的天的數(shù)據(jù)中任意抽取天的數(shù)據(jù),求這天中恰好有天空氣質(zhì)量為一級(jí),另一天空氣質(zhì)量為二級(jí)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△OAB的頂點(diǎn)坐標(biāo)為O(0,0),A(2,9),B(6,﹣3),點(diǎn)P的橫坐標(biāo)為14,且 ,點(diǎn)Q是邊AB上一點(diǎn),且 .
(1)求實(shí)數(shù)λ的值與點(diǎn)P的坐標(biāo);
(2)求點(diǎn)Q的坐標(biāo);
(3)若R為線段OQ上的一個(gè)動(dòng)點(diǎn),試求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出以下四個(gè)命題:
①若 < <0,則 + >2;
②若a>b,則am2>bm2;
③在△ABC中,若sinA=sinB,則A=B;
④任意x∈R,都有ax2﹣ax+1≥0,則0<a≤4.
其中是真命題的有( )
A.①②
B.②③
C.①③
D.③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)的定義域是,對(duì)于以下四個(gè)命題:
(1) 若是奇函數(shù),則也是奇函數(shù);
(2) 若是周期函數(shù),則也是周期函數(shù);
(3) 若是單調(diào)遞減函數(shù),則也是單調(diào)遞減函數(shù);
(4) 若函數(shù)存在反函數(shù),且函數(shù)有零點(diǎn),則函數(shù)也有零點(diǎn).
其中正確的命題共有
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù) 是定義在(﹣1,1)上的奇函數(shù),且 .
(1)確定函數(shù)的解析式;
(2)證明函數(shù)f(x)在(﹣1,1)上是增函數(shù);
(3)解不等式f(t﹣1)+f(t)<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),曲線在點(diǎn)處的切線與直線垂直(其中為自然對(duì)數(shù)的底數(shù)).
(I)求的解析式及單調(diào)遞減區(qū)間;
(II)是否存在常數(shù),使得對(duì)于定義域內(nèi)的任意恒成立?若存在,求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com