I={1,2,3},A⊆I,B⊆I,且A,B非空,其中集合A中的最大元素小于B中的最小元素,則滿足條件的集合A.B共有(  )組.
分析:分別討論集合A,B,利用集合A中的最大元素小于B中的最小元素,進行確定即可.
解答:解:∵A⊆I,B⊆I,且A,B非空,同時集合A中的最大元素小于B中的最小元素,
∴若A={1},則B={2},或{3}或{2,3}.
若A={2},則B={3}.
若A={1,2},則B={3}.
∴滿足條件的集合A,B共有5組.
故選:B.
點評:本題主要考查集合關系的判斷,利用集合元素的關系進行分類討論即可.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,P1(x1,y1),P2(x2,y2),…,Pn(xn,yn)(0<y1<y2<…<yn)是曲線C:y2=3x(y≥0)上的n個點,點Ai(ai,0)(i=1,2,3,…,n)在x軸的正半軸上,且△Ai-1AiPi是正三角形(A0是坐標原點).
(Ⅰ)求出a1,a2,a3,并猜想an關于n的表達式(不需證明);
(Ⅱ)設bn=
1
an+1
+
1
an+2
+
1
an+3
+…+
1
a2n
,若對任意的正整數(shù)n,當m∈[-1,1]時,不等式t2-2mt+
1
6
bn
恒成立,求實數(shù)t的取值范圍.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知k、n∈N*,且k≤n,求證:k
C
k
n
=n
C
k-1
n-1

(2)設數(shù)列a0,a1,a2,…滿足a0≠a1,ai-1+ai+1=2ai(i=1,2,3,…).證明:對任意的正整數(shù)n,p(x)=a0
C
0
n
(1-x)n+a1
C
1
n
x(1-x)n-1+a2
C
2
n
x2(1-x)n-2+…+an
C
n
n
xn
是關于x的一次式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若A1,A2,…,Am為集合A={1,2,…,n}(n≥2且n∈N*)的子集,且滿足兩個條件:
①A1∪A2∪…∪Am=A;
②對任意的{x,y}⊆A,至少存在一個i∈{1,2,3,…,m},使Ai∩{x,y}={x}或{y}.則稱集合組A1,A2,…,Am具有性質(zhì)P.
如圖,作n行m列數(shù)表,定義數(shù)表中的第k行第l列的數(shù)為akl=
1(k∈Al)
0(k∉Al)

a11 a12 a1m
a21 a22 a2m
an1 an2 anm
(Ⅰ)當n=4時,判斷下列兩個集合組是否具有性質(zhì)P,如果是請畫出所對應的表格,如果不是請說明理由;
集合組1:A1={1,3},A2={2,3},A3={4};
集合組2:A1={2,3,4},A2={2,3},A3={1,4}.
(Ⅱ)當n=7時,若集合組A1,A2,A3具有性質(zhì)P,請先畫出所對應的7行3列的一個數(shù)表,再依此表格分別寫出集合A1,A2,A3;
(Ⅲ)當n=100時,集合組A1,A2,…,At是具有性質(zhì)P且所含集合個數(shù)最小的集合組,求t的值及|A1|+|A2|+…|At|的最小值.(其中|Ai|表示集合Ai所含元素的個數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•保定一模)設a>0,b>0,且a+b=2,
1
a
+
1
b
的最小值為m,記滿足x2+y2≤3m的所有整點坐標為(xi,yi)(i=1,2,3,…,n),則
n
i=1
|xiyi|
20
20

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•天津模擬)某射擊游戲規(guī)定:每位選手最多射擊3次;射擊過程中若擊中目標,方可進行下一次射擊,否則停止射擊;同時規(guī)定第i(i=1,2,3)次射擊時擊中目標得4-i分,否則該次射擊得0分.已知選手甲每次射擊擊中目標的概率為0.8,且其各次射擊結(jié)果互不影響.
(Ⅰ)求甲恰好射擊兩次的概率;
(Ⅱ)設該選手甲停止射擊時的得分總和為ξ,求隨機變量ξ的分布列及數(shù)學期望.

查看答案和解析>>

同步練習冊答案