過(guò)定點(diǎn)(1,3)可作兩條直線與圓x2+y2+2kx+2y+k2-24=0相切,則k的取值范圍是

[  ]
A.

k>2

B.

k<-4

C.

k>2或k<-4

D.

-4<k<2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)定點(diǎn)(1,2)可作兩直線與圓x2+y2+kx+2y+k2-15=0相切,則k的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)雙曲線2x2-y2=1上一點(diǎn)A(1,1)作兩條動(dòng)弦AB,AC,且直線AB,AC的斜率的乘積為3.
(1)問(wèn)直線BC是否可與坐標(biāo)軸垂直?若可與坐標(biāo)軸垂直,求直線BC的方程,若不與坐標(biāo)軸垂直,試說(shuō)明理由.
(2)證明直線BC過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)定點(diǎn)(1,3)可作兩條直線與圓x2+y2+2kx+2y+k2-24=0相切,則k的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省菏澤市高三5月高考沖刺題文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知點(diǎn)為圓上的動(dòng)點(diǎn),且不在軸上,軸,垂足為,線段中點(diǎn)的軌跡為曲線,過(guò)定點(diǎn)任作一條與軸不垂直的直線,它與曲線交于、兩點(diǎn)。

(I)求曲線的方程;

(II)試證明:在軸上存在定點(diǎn),使得總能被軸平分

【解析】第一問(wèn)中設(shè)為曲線上的任意一點(diǎn),則點(diǎn)在圓上,

,曲線的方程為

第二問(wèn)中,設(shè)點(diǎn)的坐標(biāo)為,直線的方程為,  ………………3分   

代入曲線的方程,可得 

,∴

確定結(jié)論直線與曲線總有兩個(gè)公共點(diǎn).

然后設(shè)點(diǎn),的坐標(biāo)分別, ,則,  

要使軸平分,只要得到。

(1)設(shè)為曲線上的任意一點(diǎn),則點(diǎn)在圓上,

,曲線的方程為.  ………………2分       

(2)設(shè)點(diǎn)的坐標(biāo)為,直線的方程為,  ………………3分   

代入曲線的方程,可得 ,……5分            

,∴,

∴直線與曲線總有兩個(gè)公共點(diǎn).(也可根據(jù)點(diǎn)M在橢圓的內(nèi)部得到此結(jié)論)

………………6分

設(shè)點(diǎn),的坐標(biāo)分別, ,則,   

要使軸平分,只要,            ………………9分

,,        ………………10分

也就是,,

,即只要  ………………12分  

當(dāng)時(shí),(*)對(duì)任意的s都成立,從而總能被軸平分.

所以在x軸上存在定點(diǎn),使得總能被軸平分

 

查看答案和解析>>

同步練習(xí)冊(cè)答案