分析 (Ⅰ)由題設(shè)得到關(guān)于a,b,c的方程組,由此能求出橢圓方程.
(Ⅱ)當(dāng)直線斜率不存在時(shí),|MN|=4,此時(shí)PQ的長(zhǎng)即為橢圓長(zhǎng)軸長(zhǎng),|PQ|=4,從而四邊形PMQN面積為8;求出直線MN的方程為:y=k(x-1),直線PQ的方程,設(shè)M(x1,y1),N(x2,y2),P(x3,y3),Q(x4,y4),得k2x2-(2k2+4)x+k2=0,由拋物線定義,由此求出SPMQN.
解答 解:(Ⅰ)由題設(shè)知:$\left\{\begin{array}{l}{2a=4}\\{e=\frac{c}{a}=\frac{1}{2}}\end{array}\right.$,
∴a=2,c=1,b=$\sqrt{3}$,
∴所求的橢圓方程為:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1;
(Ⅱ)直線MN的斜率為k,k≠0,設(shè)直線MN的方程為:y=k(x-1),
直線PQ的方程為y=-$\frac{1}{k}$(x-1),
設(shè)M(x1,y1),N(x2,y2),P(x3,y3),Q(x4,y4),
由$\left\{\begin{array}{l}{y=k(x-1)}\\{{y}^{2}=4x}\end{array}\right.$,消去y可得k2x2-(2k2+4)x+k2=0,
由拋物線定義可知:|MN|=|MF2|+|NF2|=x1+1+x2+1=$\frac{{2k}^{2}+4}{{k}^{2}}$+2=4+$\frac{4}{{k}^{2}}$,
由$\left\{\begin{array}{l}{y=-\frac{1}{k}(x-1)}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,消去y得(3k2+4)x2-8x+4-12k2=0,
從而|PQ|=$\sqrt{1{+(-\frac{1}{k})}^{2}}$|x3-x4|=$\frac{12(1{+k}^{2})}{{3k}^{2}+4}$,
∴∴SPMQN=$\frac{1}{2}$|MN|•|PQ|=$\frac{1}{2}$|MN|•|PQ|
=$\frac{1}{2}$(4+$\frac{4}{{k}^{2}}$)•$\frac{12(1{+k}^{2})}{{3k}^{2}+4}$=24•$\frac{{(1{+k}^{2})}^{2}}{{3k}^{4}+{4k}^{2}}$.
點(diǎn)評(píng) 本題考查橢圓方程和軌跡方程的求法,考查四邊形面積的最小值的求法.綜合性強(qiáng),難度大,是高考的重點(diǎn).解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意挖掘題設(shè)中的隱含條件,合理地進(jìn)行等價(jià)轉(zhuǎn)化.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{4\sqrt{2}}{9}$ | B. | $\frac{8}{9}$ | C. | -$\frac{7}{9}$ | D. | $\frac{7}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{2π}{3}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com