【題目】已知橢圓的離心率為,其中左焦點(diǎn)(-2,0).

1) 求橢圓C的方程;

2) 若直線y=x+m與橢圓C交于不同的兩點(diǎn)AB,且線段AB的中點(diǎn)M在圓x2+y2=1上,求m的值.

【答案】19.

設(shè)

經(jīng)檢驗(yàn)解題

【解析】

本試題主要是考查了橢圓方程的求解,以及直線與橢圓的位置關(guān)系的運(yùn)用。

1)由題意,得得到a,b,c的值。得到橢圓的方程。

2)設(shè)點(diǎn)AB的坐標(biāo)分別為(x1,y1),(x2, y2),線段AB的中點(diǎn)為M(x0,y0)

y得,3x2+4mx+2m2-8=0結(jié)合韋達(dá)定理,和判別式得到參數(shù)m值。

解:(1) 由題意,得………………………………………………3

解得橢圓C的方程為.…………………………………………6

2) 設(shè)點(diǎn)A、B的坐標(biāo)分別為(x1,y1),(x2, y2),線段AB的中點(diǎn)為M(x0,y0),

y得,3x2+4mx+2m2-8=0,……………………………………………8

Δ=96-8m20,∴-2m2.

.………………………………………12

點(diǎn)M(x0,y0)在圓x2+y2=1上,

.………………………………………………… 14

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,若關(guān)于x的方程f2(x)﹣bf(x)+c=0(b,c∈R)有8個(gè)不同的實(shí)數(shù)根,則b+c的取值范圍為(
A.(﹣∞,3)
B.(0,3]
C.[0,3]
D.(0,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓C: =1(a>b>0)的中心在原點(diǎn),焦點(diǎn)在x軸上,焦距為2,且與橢圓x2+ =1有相同離心率,直線l:y=kx+m與橢圓C交于不同的A,B兩點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若在橢圓C上存在點(diǎn)Q,滿足 ,(O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)λ取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓錐曲線 E:
(I)求曲線 E的離心率及標(biāo)準(zhǔn)方程;
(II)設(shè) M(x0 , y0)是曲線 E上的任意一點(diǎn),過原點(diǎn)作⊙M:(x﹣x02+(y﹣y02=8的兩條切線,分別交曲線 E于點(diǎn) P、Q.
①若直線OP,OQ的斜率存在分別為k1 , k2 , 求證:k1k2=﹣ ;
②試問OP2+OQ2是否為定值.若是求出這個(gè)定值,若不是請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖ABCD是平面四邊形,∠ADB=∠BCD=90°,AB=4,BD=2.
(Ⅰ)若BC=1,求AC的長;
(Ⅱ)若∠ACD=30°,求tan∠BDC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四面體P﹣ABC中,PA=4,AC=2 ,PB=BC=2 ,PA⊥平面PBC,則四面體P﹣ABC的外接球半徑為(
A.2
B.2
C.4
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且對(duì)任意正整數(shù)n都有an是n與Sn的等差中項(xiàng),bn=an+1.
(1)求證:數(shù)列{bn}是等比數(shù)列,并求出其通項(xiàng)bn;
(2)若數(shù)列{Cn}滿足Cn= 且數(shù)列{C }的前n項(xiàng)和為Tn , 證明Tn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四面體P﹣ABC中,PA=4,AC=2 ,PB=BC=2 ,PA⊥平面PBC,則四面體P﹣ABC的外接球半徑為(
A.2
B.2
C.4
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在等比數(shù)列{an}中,a2=3,a5=81,bn=1+2log3an
(1)求數(shù)列{bn}的前n項(xiàng)的和;
(2)已知數(shù)列 的前項(xiàng)的和為Sn , 證明:

查看答案和解析>>

同步練習(xí)冊(cè)答案