已知線段MN的兩個端點M、N分別在軸、軸上滑動,且,點P在線段MN上,滿足,記點P的軌跡為曲線W.
(1)求曲線W的方程,并討論W的形狀與的值的關系;
(2)當時,設A、B是曲線W與軸、軸的正半軸的交點,過原點的直線與曲線W交于C、D兩點,其中C在第一象限,求四邊形ACBD面積的最大值.

(1)當時,曲線的方程為,表示焦點在軸上的橢圓;當時,曲線的方程為為以原點為圓心、半徑為2的圓;當時,曲線的方程為,表示焦點在軸上的橢圓.(2).

解析試題分析:(1)設出,根據(jù)已知條件以及 ,得到一個關系式,化簡成標準形式為,分別討論當,時所表達的的形狀;(2)由,則曲線的方程是,得出,再設,依據(jù)對稱性得,表示出,根據(jù)基本不等式得到,故四邊形面積有最大值.
試題解析:(1)設,則,而由 ,則,解得,代入得:,化簡得.
時,曲線的方程為,表示焦點在軸上的橢圓;
時,曲線的方程為,為以原點為圓心、半徑為2的圓;
時,曲線的方程為,表示焦點在軸上的橢圓.
(2)由(1)當時,曲線的方程是,可得.設,由對稱性可得.因此,四邊形的面積,
,而,即,所以四邊形的面積當且僅當時,即時取等號,故當C的坐標為時,四邊形面積有最大值.

考點:1.橢圓的標準方程;2.直線與圓錐曲線的聯(lián)立問題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,動點滿足:點到定點與到軸的距離之差為.記動點的軌跡為曲線.
(1)求曲線的軌跡方程;
(2)過點的直線交曲線、兩點,過點和原點的直線交直線于點,求證:直線平行于軸.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的左、右焦點分別為,離心率為,P是橢圓上一點,且面積的最大值等于2.
(1)求橢圓的方程;
(2)過點M(0,2)作直線與直線垂直,試判斷直線與橢圓的位置關系5
(3)直線y=2上是否存在點Q,使得從該點向橢圓所引的兩條切線相互垂直?若存在,求點Q的坐標;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的左、右焦點分別為,橢圓上的點滿足,且△的面積為
(Ⅰ)求橢圓的方程;
(Ⅱ)設橢圓的左、右頂點分別為、,過點的動直線與橢圓相交于、兩點,直線與直線的交點為,證明:點總在直線上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓經(jīng)過點,.
(Ⅰ)求橢圓的方程;
(Ⅱ)設橢圓的左、右焦點分別為,過點的直線交橢圓兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,已知分別是橢圓的左、右焦點,橢圓與拋物線有一個公共的焦點,且過點.
(Ⅰ)求橢圓的方程;
(Ⅱ)設直線與橢圓相交于兩點,若(為坐標原點),試判斷直線與圓的位置關系,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知是拋物線上的兩個點,點的坐標為,直線的斜率為.設拋物線的焦點在直線的下方.
(Ⅰ)求k的取值范圍;
(Ⅱ)設C為W上一點,且,過兩點分別作W的切線,記兩切線的交點為. 判斷四邊形是否為梯形,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C:的離心率為,長軸長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線交橢圓C于A、B兩點,試問:在y軸正半軸上是否存在一個定點M滿足,若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓及定點,點是圓上的動點,點上,且滿足,點的軌跡為曲線。
(1)求曲線的方程;
(2)若點關于直線的對稱點在曲線上,求的取值范圍。

查看答案和解析>>

同步練習冊答案