A. | $\frac{100}{101}$ | B. | $\frac{99}{100}$ | C. | $\frac{101}{100}$ | D. | $\frac{200}{101}$ |
分析 先根據(jù)累加法求數(shù)列的通項公式an=$\frac{n(n+1)}{2}$,再裂項$\frac{1}{{a}_{n}}$=$\frac{2}{n(n+1)}$=2($\frac{1}{n}$-$\frac{1}{n+1}$),即可求前100項和.
解答 解:數(shù)列{an}滿足a1=1,且對任意的n∈N+都有an+1=a1+an+n,
∴an+1-an=1+n,
∴an-an-1=n,
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=n+(n-1)+…+2+1=$\frac{n(n+1)}{2}$,
∴$\frac{1}{{a}_{n}}$=$\frac{2}{n(n+1)}$=2($\frac{1}{n}$-$\frac{1}{n+1}$),
∴{$\frac{1}{{a}_{n}}$}的前100項和2(1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{100}$-$\frac{1}{101}$)=2(1-$\frac{1}{101}$)=$\frac{200}{101}$,
故選:D.
點評 本題考查了累加法求數(shù)列的通項公式和裂項法求前n項和,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [0,$\frac{π}{2}$] | B. | [$\frac{π}{2}$,π] | C. | [$\frac{π}{4}$,$\frac{π}{2}$] | D. | [$\frac{3π}{4}$,π] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com