20.${(x-\frac{1}{{\root{3}{x}}})^{16}}$的展開式中常數(shù)項(xiàng)為1820.(用數(shù)字作答)

分析 通項(xiàng)公式Tr+1=${∁}_{16}^{r}{x}^{16-r}(-\frac{1}{\root{3}{x}})^{r}$=$(-1)^{r}{∁}_{16}^{r}$${x}^{16-\frac{4r}{3}}$,令16-$\frac{4r}{3}$=0,解得r即可得出.

解答 解:通項(xiàng)公式Tr+1=${∁}_{16}^{r}{x}^{16-r}(-\frac{1}{\root{3}{x}})^{r}$=$(-1)^{r}{∁}_{16}^{r}$${x}^{16-\frac{4r}{3}}$,
令16-$\frac{4r}{3}$=0,解得r=12.
∴${(x-\frac{1}{{\root{3}{x}}})^{16}}$的展開式中常數(shù)項(xiàng)=${∁}_{16}^{12}$=1820.
故答案為:1820.

點(diǎn)評 本題考查了二項(xiàng)式定理的應(yīng)用,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知logx8=3,則x的值為( 。
A.$\frac{1}{2}$B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知a,b∈R+,求證:a3+b3≥a2b+ab2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=ax3+x.
(Ⅰ)若函數(shù)f(x)在x=1處取得極值,求實(shí)數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,函數(shù)g(x)=f′(x)(x2+px+q) (其中f′(x)為函數(shù)f(x)的導(dǎo)數(shù))的圖象關(guān)于直線x=1對稱,求函數(shù)g(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,已知四棱錐P-ABCD,底面ABCD為菱形,且∠DAB=60°,△PAB是邊長為a的正三角形,且平面PAB⊥平面ABCD,已知點(diǎn)M是PD的中點(diǎn).
(Ⅰ)證明:PB∥平面AMC;
(Ⅱ)求直線BD與平面AMC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若一系列函數(shù)的解析式相同,值域相同,但定義域不同,則稱這些函數(shù)為“合一函數(shù)”,那么函數(shù)解析式為y=2x2-1,值域?yàn)閧1,7}的“合一函數(shù)”共有( 。
A.10個(gè)B.9個(gè)C.8個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列正方體或四面體中,P、Q、R、S分別是所在棱的中點(diǎn),這四個(gè)點(diǎn)不共面的一個(gè)圖形是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期為π.
(1)求ω的值;
(2)求f(x)的單調(diào)遞增區(qū)間.
(3)求當(dāng)x為何值時(shí),函數(shù)取最大值,并求最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知命題p:?x0∈R,$sin{x_0}<\frac{1}{2}{x_0}$,則¬p為?x∈R,sin x≥$\frac{1}{2}$x.

查看答案和解析>>

同步練習(xí)冊答案