已知數(shù)列{an}(n∈N*),滿足a1=1,a2=2,a3=3,a4=4,a5=5.當n≥5時,an+1=a1a2…an-1.若數(shù)列{bn}(n∈N*)滿足bn=a1a2…an-a12-a22-…-an2.

(1)求b5;

(2)求證:當n≥5時,bn+1-bn=-1;

(3)求證:僅存在兩個正整數(shù)m,使得a1a2…am=a12+a22+…+am2.

(1)解析:b5=1×2×3×4×5-12-22-32-42-52=65.

(2)證明:bn+1=a1a2…anan+1-a12-a22-…-an2-an+12

=a1a2…an(a1a2…an-1)-a12-a22-…-a2n-(a1a2…an-1)2

=a1a2…an-a12-a22-…-an2-1

=bn-1(n≥5),

∴bn+1-bn=-1(n≥5).

(3)證明:易算出b1=0,b2≠0,b3≠0,b4≠0,

當n≥5時,bn+1=bn-1,這表明{bn}從第5項開始,構(gòu)成一個以b5=65為首項,公差為-1的等差數(shù)列.

由bm=b5+(m-5)×(-1)=65-m+5=0,解出m=70.

因此,滿足a1a2…am=a12+a22+…+am2的正整數(shù)只有兩個:

m=70或m=1.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an-n}是等比數(shù)列,且滿足a1=2,an+1=3an-2n+1,n∈N*.
(Ⅰ)求數(shù)列{an}的通項公式an;
(Ⅱ)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•韶關(guān)模擬)已知數(shù)列{an} (n∈N*)滿足:a1=1,an+1-sin2θ•an=cos2θ•cos2nθ,其中θ∈(0,
π
2
)

(1)當θ=
π
4
時,求{an}的通項公式;
(2)在(1)的條件下,若數(shù)列{bn}中,bn=sin
πan
2
+cos
πan-1
4
(n∈N*,n≥2)
,且b1=1.求證:對于?n∈N*,1≤bn
2
恒成立;
(3)對于θ∈(0,
π
2
)
,設(shè){an}的前n項和為Sn,試比較Sn+2與
4
sin2
的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}(n∈N*)是等比數(shù)列,且an>0,a1=2,a3=8,
(1)求數(shù)列{an}的通項公式;
(2)求證:
1
a1
+
1
a2
+
1
a3
+…+
1
an
<1
;
(3)設(shè)bn=2log2an+1,求數(shù)列{bn}的前100項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•松江區(qū)二模)已知數(shù)列{an}(n∈N*)的前n項和為Sn,數(shù)列{
Sn
n
}
是首項為0,公差為
1
2
的等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=
4
15
•(-2)an(n∈N*)
,對任意的正整數(shù)k,將集合{b2k-1,b2k,b2k+1}中的三個元素排成一個遞增的等差數(shù)列,其公差為dk,求dk;
(3)對(2)題中的dk,設(shè)A(1,5d1),B(2,5d2),動點M,N滿足
MN
=
AB
,點N的軌跡是函數(shù)y=g(x)的圖象,其中g(shù)(x)是以3為周期的周期函數(shù),且當x∈(0,3]時,g(x)=lgx,動點M的軌跡是函數(shù)f(x)的圖象,求f(x).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•松江區(qū)二模)已知數(shù)列{an}(n∈N*)的前n項和為Sn,數(shù)列{
Sn
n
}
是首項為0,公差為
1
2
的等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=
4
15
•(-2)an(n∈N*)
,對任意的正整數(shù)k,將集合{b2k-1,b2k,b2k+1}中的三個元素排成一個遞增的等差數(shù)列,其公差為dk,求證:數(shù)列{dk}為等比數(shù)列;
(3)對(2)題中的dk,求集合{x|dk<x<dk+1,x∈Z}的元素個數(shù).

查看答案和解析>>

同步練習冊答案