A. | -2$\sqrt{2}$ | B. | 2$\sqrt{2}$ | C. | -$\sqrt{2}$ | D. | $\sqrt{2}$ |
分析 由題意知f(x)是區(qū)間(a+$\frac{4}{a}$,-b2+4b)上的奇函數(shù),從而求出b=2,a=-2,由此能求出g(-$\sqrt{2}$).
解答 解:由題意知f(x)是區(qū)間(a+$\frac{4}{a}$,-b2+4b)上的奇函數(shù),
∴a+$\frac{4}{a}-^{2}+4b=0,a<0$,
∴(b-2)2+($\sqrt{-a}-\frac{2}{\sqrt{-a}}$)2=0,
解得b=2,a=-2,
∴g(-$\sqrt{2}$)=-f($\sqrt{2}$)=-2-$\sqrt{2}a+b$=-2+2$\sqrt{2}+2$=2$\sqrt{2}$.
故選:B.
點(diǎn)評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-3,-1) | B. | (-1,3) | C. | (3,4) | D. | (-1,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0≤α<$\frac{π}{4}$或$\frac{3π}{4}$<α≤π | B. | $\frac{π}{4}$≤α≤$\frac{3π}{4}$且α≠$\frac{π}{2}$ | C. | 0≤α<$\frac{π}{4}$或$\frac{3π}{4}$<α<π | D. | 0≤α<$\frac{π}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com