若雙曲線
的左、右頂點分別為
、
,點
是第一象限內(nèi)雙曲線上的點.若直線
、
的傾斜角分別為
,
,且
,那么
的值是
.
由已知:設(shè)直線AP方程為
,直線BP方程為
,兩方程聯(lián)立解得
,即
,將P點坐標(biāo)代入
得
, 又β="mα" ∴
,
,因為
,并且m>1,所以k=0,所以
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知點
為圓
上的動點,且
不在
軸上,
軸,垂足為
,線段
中點
的軌跡為曲線
,過定點
任作一條與
軸不垂直的直線
,它與曲線
交于
、
兩點。
(I)求曲線
的方程;
(II)試證明:在
軸上存在定點
,使得
總能被
軸平分
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
在直角坐標(biāo)系
上取兩個定點
,再取兩個動點
,且
.
(Ⅰ)求直線
與
交點的軌跡
的方程;
(Ⅱ)已知點
(
)是軌跡
上的定點,
是軌跡
上的兩個動點,如果直線
的斜率
與直線
的斜率
滿足
,試探究直線
的斜率是否是定值?若是定值,求出這個定值,若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知F
1、F
2是雙曲線
的左右焦點,過F
1的直線與左支交于A、B兩點,若
,則該雙曲線的離心率是為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,已知橢圓E經(jīng)過點A(2,3),對稱軸為坐標(biāo)軸,焦點
、
在x軸上,離心率
(1)求橢圓E的方程;
(2)求
的角平分線所在直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
在平面直角坐標(biāo)系中,已知直線l:y=-1,定點F(0,1),過平面內(nèi)動點P作PQ丄l于Q點,且
•
(I )求動點P的軌跡E的方程;
(II)過點P作圓
的兩條切線,分別交x軸于點B、C,當(dāng)點P的縱坐標(biāo)y
0>4時,試用y
0表示線段BC的長,并求ΔPBC面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知拋物線的參數(shù)方程為
(t為參數(shù)),其中p>0,焦點為F,準(zhǔn)線為
. 過拋物線上一點M作
的垂線,垂足為E. 若|EF|=|MF|,點M的橫坐標(biāo)是3,則p = ______.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知拋物線C的頂點在原點,焦點為F(2, 0)。
(1)求拋物線C的方程;
(2)過
的直線
交曲線
于
兩點,又
的中垂線交
軸于點
,
求
的取值范圍。
查看答案和解析>>