已知0≤x≤2,y=4 x+
1
2
-3•2x+2+7的最大值為M,最小值為m,求M-m的值.
考點(diǎn):二次函數(shù)在閉區(qū)間上的最值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:先將原函數(shù)化簡并整理成:y=2(2x-3)2-11,根據(jù)x的取值求出2x的取值,然后根據(jù)二次函數(shù)取最值情況求出原函數(shù)的最值,這樣即可求得M-m的值.
解答: 解:y=2•22x-12•2x+7=2(2x-3)2-11;
∵0≤x≤2;
∴1≤2x≤4;
∴2x=3時(shí),y取最小值m=-11;
2x=1時(shí),y取最大值M=-3;
∴M-m=8.
點(diǎn)評(píng):考查指數(shù)函數(shù)的單調(diào)性,對二次函數(shù)進(jìn)行配方求最值的方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在公差為d的等差數(shù)列{an}中,已知a1=10,且2a1,2a2+2,5a3-1成等比數(shù)列.
(1)求d,an;     
(2)若d<0,求|a1|+|a2|+|a3|+…+|an|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x+1
2x-1

(Ⅰ)當(dāng)x∈(0,+∞)時(shí),判斷函數(shù)f(x)的單調(diào)性,并證之;
(Ⅱ)設(shè)F(x)=xf(x),討論函數(shù)F(x)的奇偶性,并證明:F(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:3x-y+3=0,求:
(1)過點(diǎn)P(4,5)且與直線l垂直的直線方程;
(2)與直線l平行且距離等于
10
的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l過點(diǎn)P(2,3),且被兩條平行直線l1:3x+4y-7=0,l2:3x+4y+8=0截得的線段長為d.
(1)求d的最小值;
(2)當(dāng)直線l與x軸平行,試求d的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=loga
x+1
x-1
+m(a>0且a≠1)是奇函數(shù)
(1)求m的值;
(2)討論f(x)在(1,+∞)上的單調(diào)性,并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知?x∈R,ex≥ax+b恒成立.
(1)當(dāng)b=1時(shí),求a的范圍.
(2)求a•b的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的圓心在直線y=-2x上,并且與直線x+y=1相切于點(diǎn)A(2,-1).
(Ⅰ)求圓C的方程;
(Ⅱ)從圓C外一點(diǎn)M引圓C的切線MN,N為切點(diǎn),且MN=MO(O為坐標(biāo)原點(diǎn)),求MN的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a∈R,函數(shù)f(x)=ex+ae-x的導(dǎo)函數(shù)是f′(x)且f′(x)是奇函數(shù),則a的值為
 

查看答案和解析>>

同步練習(xí)冊答案