【題目】已知平面上一動(dòng)點(diǎn)P到定點(diǎn)C(1,0)的距離與它到直線的距離之比為.
(1)求點(diǎn)P的軌跡方程;
(2)點(diǎn)O是坐標(biāo)原點(diǎn),A,B兩點(diǎn)在點(diǎn)P的軌跡上,F是點(diǎn)C關(guān)于原點(diǎn)的對稱點(diǎn),若,求的取值范圍.
【答案】(1)(2)
【解析】
(1)設(shè),由動(dòng)點(diǎn)P到定點(diǎn)C(1,0)的距離與它到直線的距離之比為,列出方程,即可求解;
(2)由,得,代入橢圓的方程得,又由,得,兩式相減,求得,根據(jù)的范圍,即可求解的取值范圍.
(1)設(shè)是所求軌跡上的任意一點(diǎn),
由動(dòng)點(diǎn)P到定點(diǎn)C(1,0)的距離與它到直線的距離之比為,
則,化簡得,即點(diǎn)P的軌跡方程為.
(2)由F是點(diǎn)C關(guān)于原點(diǎn)的對稱點(diǎn),所以點(diǎn)F的坐標(biāo)為(-1,0),
設(shè),,因?yàn)?/span>,
則,可得,
∵,即 ①
又由,則 ②
①②得:,化簡得,
∵,∴,解得,
所以λ的取值范圍是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐P-ABC中,頂點(diǎn)P在底面ABC的投影G是ABC的外心,PB=BC=2,則面PBC與底面ABC所成的二面角的大小為60,則三棱錐PABC的外接球的表面積為______
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計(jì)如下表:
(1)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程;
(2)若近幾年該農(nóng)產(chǎn)品每千克的價(jià)格 (單位:元)與年產(chǎn)量滿足的函數(shù)關(guān)系式為,且每年該農(nóng)產(chǎn)品都能售完.
①根據(jù)(1)中所建立的回歸方程預(yù)測該地區(qū)年該農(nóng)產(chǎn)品的產(chǎn)量;
②當(dāng)為何值時(shí),銷售額最大?
附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為: , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在底面為梯形的四棱錐S﹣ABCD中,已知AD∥BC,∠ASC=60°,,SA=SC=SD=2.
(1)求證:AC⊥SD;
(2)求三棱錐B﹣SAD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電視臺“挑戰(zhàn)主持人”節(jié)目的挑戰(zhàn)者闖第一關(guān)需要回答三個(gè)問題,其中前兩個(gè)問題回答正確各得分,回答不正確得分,第三個(gè)問題回答正確得分,回答不正確得分.如果一個(gè)挑戰(zhàn)者回答前兩個(gè)問題正確的概率都是,回答第三個(gè)問題正確的概率為,且各題回答正確與否相互之間沒有影響.若這位挑戰(zhàn)者回答這三個(gè)問題總分不低于分就算闖關(guān)成功.
(Ⅰ)求至少回答對一個(gè)問題的概率;
(Ⅱ)求這位挑戰(zhàn)者回答這三個(gè)問題的總得分X的分布列;
(Ⅲ)求這位挑戰(zhàn)者闖關(guān)成功的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為調(diào)查高三年級學(xué)生的身高情況,按隨機(jī)抽樣的方法抽取100名學(xué)生,得到男生身高情況的頻率分布直方圖(圖(1))和女生身高情況的頻率分布直方圖(圖(2)).已知圖(1)中身高在的男生人數(shù)有16人.
(1)試問在抽取的學(xué)生中,男,女生各有多少人?
(2)根據(jù)頻率分布直方圖,完成下列的列聯(lián)表,并判斷能有多大(百分之幾)的把握認(rèn)為“身高與性別有關(guān)”?
總計(jì) | |||
男生身高 | |||
女生身高 | |||
總計(jì) |
(3)在上述100名學(xué)生中,從身高在之間的男生和身高在之間的女生中間按男、女性別分層抽樣的方法,抽出6人,從這6人中選派2人當(dāng)旗手,求2人中恰好有一名女生的概率.
參考公式:
參考數(shù)據(jù):
0.025 | 0.010 | 0.005 | 0.001 | |
5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓:經(jīng)過點(diǎn),且點(diǎn)為其一個(gè)焦點(diǎn).
(1)求橢圓的方程;
(2)設(shè)橢圓與軸的兩個(gè)交點(diǎn)為,,不在軸上的動(dòng)點(diǎn)在直線上運(yùn)動(dòng),直線,分別與橢圓交于點(diǎn),,證明:直線通過一個(gè)定點(diǎn),且的周長為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】長方形中,,是中點(diǎn)(圖1).將沿折起,使得(圖2)在圖2中:
(1)求證:平面平面;
(2)在線段上是否存點(diǎn),使得二面角的余弦值為,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】幾位大學(xué)生響應(yīng)國家的創(chuàng)業(yè)號召,開發(fā)了一款應(yīng)用軟件.為激發(fā)大家學(xué)習(xí)數(shù)學(xué)的興趣,他們推出了“解數(shù)學(xué)題獲取軟件激活碼”的活動(dòng).這款軟件的激活碼為下面數(shù)學(xué)問題的答案:已知數(shù)列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一項(xiàng)是20,接下來的兩項(xiàng)是20,21,再接下來的三項(xiàng)是20,21,22,依此類推.求滿足如下條件的最小整數(shù)N:N>100且該數(shù)列的前N項(xiàng)和為2的整數(shù)冪.那么該款軟件的激活碼是
A. 440B. 330
C. 220D. 110
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com