已知函數(shù)f(x)=x3+ax2+bx+5,在函數(shù)f(x)圖象上一點(diǎn)P(1,f(1))處切線的斜率為3.
(1)若函數(shù)y=f(x)在x=-2時(shí)有極值,求f(x)的解析式;
(2)若函數(shù)y=f(x)在區(qū)間[-2,1]上單調(diào)遞增,求b的取值范圍.
分析:(1)由條件知,f'(1)=3,即2a+b=0  ①,再由f'(-2)=0,即12-4a+b=0 ②,①②聯(lián)立解得a,b的值,
從而得到f(x)的解析式.
(2)依題意f'(x)在[-2,1]上恒有f'(x)≥0,分y=f'(x)的對(duì)稱軸 在區(qū)間的左側(cè)、右側(cè)、中間三種
情況求得f'(x)的 最小值,由最小值大于或等于0求出b的取值范圍.
解答:解:由f(x)=x3+ax2+bx+5,求導(dǎo)數(shù)得f'(x)=3x2+2ax+b,
由在函數(shù)f(x)圖象上一點(diǎn)P(1,f(1))處切線的斜率為3,知f'(1)=3,即3+2a+b=3,
化簡得2a+b=0  ①.
(1)因?yàn)閥=f(x)在x=-2(3)時(shí)有極值,所以,f'(-2)=0,即12-4a+b=0 ②.
由①②聯(lián)立解得a=2,b=-4,∴f(x)=x3+2x2-4x+5.
(2)f'(x)=3x2+2ax+b,由①知2a+b=0,∴f'(x)=3x2-bx+b.y=f(x)在區(qū)間[-2,1]上單調(diào)遞增,
依題意f'(x)在[-2,1]上恒有f'(x)≥0,即  3x2-bx+b≥0在[-2,1]上恒成立,
下面討論函數(shù)y=f'(x)的對(duì)稱軸:
當(dāng) x=
b
6
≥1
 時(shí),f'(x)min =f'(1)=3-b+b>0,∴b≥6.
當(dāng) x=
b
6
≤-2
 時(shí),f'(x)min =f'(-2)=12+2b+b≥0,無實(shí)數(shù)解.
當(dāng) -2<
b
6
<1
 時(shí),f′(x)min=
12b-b2
12
≥0
,∴0≤b<6.
綜合上述討論可知,b的取值范圍是b|b≥0.
點(diǎn)評(píng):本小題主要考查函數(shù)與導(dǎo)數(shù)等知識(shí),考查分類討論,化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,
以及推理論證能力和運(yùn)算求解能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案