(本小題滿分12分)
已知數(shù)列的前項(xiàng)和為,,,其中為常數(shù),
(I)證明:
(II)是否存在,使得為等差數(shù)列?并說明理由.

(I)詳見解析;(II)存在,.

解析試題分析:(I)對于含遞推式的處理,往往可轉(zhuǎn)換為關(guān)于項(xiàng)的遞推式或關(guān)于的遞推式.結(jié)合結(jié)論,該題需要轉(zhuǎn)換為項(xiàng)的遞推式.故由.兩式相減得結(jié)論;(II)對于存在性問題,可先探求參數(shù)的值再證明.本題由,,列方程得,從而求出.得,故數(shù)列的奇數(shù)項(xiàng)和偶數(shù)項(xiàng)分別為公差為4的等差數(shù)列.分別求通項(xiàng)公式,進(jìn)而求數(shù)列的通項(xiàng)公式,再證明等差數(shù)列.
試題解析:(I)由題設(shè),.兩式相減得,
由于,所以
(II)由題設(shè),,,可得,由(I)知,.令,解得
,由此可得,是首項(xiàng)為1,公差為4的等差數(shù)列,;
是首項(xiàng)為3,公差為4的等差數(shù)列,
所以,
因此存在,使得為等差數(shù)列.
【考點(diǎn)定位】1、遞推公式;2、數(shù)列的通項(xiàng)公式;3、等差數(shù)列.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在等差數(shù)列中,,其前項(xiàng)和為,等比數(shù)列 的各項(xiàng)均為正數(shù),,公比為,且
(1)求; (2)設(shè)數(shù)列滿足,求的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前項(xiàng)和,數(shù)列滿足
(1)求
(2)求證數(shù)列是等差數(shù)列,并求數(shù)列的通項(xiàng)公式;
(3)設(shè),數(shù)列的前項(xiàng)和為,求滿足的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在等差數(shù)列中,,其前項(xiàng)和為,等比數(shù)列 的各項(xiàng)均為正數(shù),,公比為,且,.
(1)求; (2)設(shè)數(shù)列滿足,求的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列滿足:,(≥3),記
(≥3).
(1)求證數(shù)列為等差數(shù)列,并求通項(xiàng)公式;
(2)設(shè),數(shù)列{}的前n項(xiàng)和為,求證:<<.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

等差數(shù)列的前項(xiàng)和為,已知,
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列滿足,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(2013·杭州模擬)已知數(shù)列{an}的前n項(xiàng)和Sn=-ann-1+2(n∈N*),數(shù)列{bn}滿足bn=2nan
(1)求證數(shù)列{bn}是等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式.
(2)設(shè)數(shù)列的前n項(xiàng)和為Tn,證明:n∈N*且n≥3時(shí),Tn
(3)設(shè)數(shù)列{cn}滿足an(cn-3n)=(-1)n-1λn(λ為非零常數(shù),n∈N*),問是否存在整數(shù)λ,使得對任意n∈N*,都有cn+1>cn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在等差數(shù)列{an}中,a1+a3=8,且a4為a2和a9的等比中項(xiàng),求數(shù)列{an}的首項(xiàng)、公差及前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是等差數(shù)列,滿足,數(shù)列滿足,且是等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊答案