設(shè)f′(x)是函數(shù)f(x)的導函數(shù),如果函數(shù)y=f′(x)的圖象如圖所示,那么下列結(jié)論一定正確的是


  1. A.
    當x∈(0,1)時,f(x)>0
  2. B.
    當x∈(0,1)時,f(x)<0
  3. C.
    函數(shù)f(x)在區(qū)間(1,+∞)內(nèi)單調(diào)遞減
  4. D.
    函數(shù)f(x)在區(qū)間(-∞,0)內(nèi)單調(diào)遞增
D
分析:由導函數(shù)的圖象判斷出導函數(shù)的符號;根據(jù)導函數(shù)的符號與函數(shù)的單調(diào)性的關(guān)系判斷出函數(shù)的單調(diào)性.
解答:由導函數(shù)的圖象知,
f′(x)>0時,x∈(-∞,0)和(1,+∞)
f′(x)<0時,有x∈(0,1)
∴f(x)在(-∞,0)和(1,+∞)上單調(diào)遞增;在(0,1)上遞減
故選D
點評:判斷函數(shù)的單調(diào)性一般利用導函數(shù)的符號,當導函數(shù)大于0則函數(shù)遞增,當導函數(shù)小于0則函數(shù)遞減.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

12、設(shè)f′(x)是函數(shù)f(x)的導函數(shù),有下列命題:
①存在函數(shù)f(x),使函數(shù)y=f(x)-f′(x)為偶函數(shù);
②存在函數(shù)f(x)f′(x)≠0,使y=f(x)與y=f′(x)的圖象相同;
③存在函數(shù)f(x)f′(x)≠0使得y=f(x)與y=f′(x)的圖象關(guān)于x軸對稱.
其中真命題的個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年浙江省臺州市臨海市杜橋中學高三(下)3月月考數(shù)學試卷(文科)(解析版) 題型:選擇題

設(shè)f(x),g(x),h(x)是R上的任意實值函數(shù),如下定義兩個函數(shù)(f°g)(x)和(x)對任意x∈R,(f°g)(x)=f(g(x));(x)=f(x)g(x),則下列等式恒成立的是( )
A.((f°g)•h)(x)=°)(x)
B.°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.•h)(x)=•)(x)

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江西省重點中學協(xié)作體高三第一次聯(lián)考數(shù)學試卷(理科)(解析版) 題型:選擇題

設(shè)f(x),g(x),h(x)是R上的任意實值函數(shù),如下定義兩個函數(shù)(f°g)(x)和(x)對任意x∈R,(f°g)(x)=f(g(x));(x)=f(x)g(x),則下列等式恒成立的是( )
A.((f°g)•h)(x)=°)(x)
B.°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.•h)(x)=•)(x)

查看答案和解析>>

科目:高中數(shù)學 來源:2011年山東省棗莊市高考數(shù)學二模試卷(理科)(解析版) 題型:選擇題

設(shè)f′(x)是函數(shù)f(x)的導函數(shù),有下列命題:
①存在函數(shù)f(x),使函數(shù)y=f(x)-f′(x)為偶函數(shù);
②存在函數(shù)f(x)f′(x)≠0,使y=f(x)與y=f′(x)的圖象相同;
③存在函數(shù)f(x)f′(x)≠0使得y=f(x)與y=f′(x)的圖象關(guān)于x軸對稱.
其中真命題的個數(shù)為( )
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學 來源:2011年廣東省高考數(shù)學試卷(文科)(解析版) 題型:選擇題

設(shè)f(x),g(x),h(x)是R上的任意實值函數(shù),如下定義兩個函數(shù)(f°g)(x)和(x)對任意x∈R,(f°g)(x)=f(g(x));(x)=f(x)g(x),則下列等式恒成立的是( )
A.((f°g)•h)(x)=°)(x)
B.°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.•h)(x)=•)(x)

查看答案和解析>>

同步練習冊答案