6.已知方程$\frac{{x}^{2}}{1+k}-\frac{{y}^{2}}{1-k}$=1表示雙曲線,則k的取值范圍是-1<k<1.

分析 利用雙曲線的性質(zhì),列出不等式求解即可.

解答 解:因?yàn)榉匠?\frac{{x}^{2}}{1+k}-\frac{{y}^{2}}{1-k}$=1表示雙曲線方程,所以(1-k)(1+k)>0,解得-1<k<1.
故答案為:-1<k<1

點(diǎn)評 本題考查雙曲線的簡單性質(zhì)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,四棱錐P-ABCD中,底面ABCD為菱形,∠BAD=60°,Q是AD的中點(diǎn).
( I)若PA=PD,求證:平面PQB⊥平面PAD;
( II)若平面APD⊥平面ABCD,且PA=PD=AD=2,線段BC的中點(diǎn)為M,求M到平面APB的距離d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.將命題“兩個(gè)全等三角形的面積相等”改為“若p,則q”的形式,再寫出它的逆命題、否命題、逆否命題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)a,b∈R,定義運(yùn)算“∨”和“∧”如下:$a∨b=\left\{\begin{array}{l}b,a≤b\\ a,a>b\end{array}\right.$,$a∧b=\left\{\begin{array}{l}a,a≤b\\ b,a>b\end{array}\right.$,若正數(shù)a,b,c,d滿足ab≤4,c+d≥4,則( 。
A.a∧b≥2,c∧d≥2B.a∧b≤2,c∨d≥2C.a∨b≥2,c∧d≤2D.a∨b≤2,c∨d≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)隨機(jī)變量X的分布列如下:
X-101
Pabc
其中a,b,c,成等差數(shù)列,若E(X)=$\frac{1}{3}$,則D(X)的值是( 。
A.$\frac{5}{9}$B.$\frac{5}{8}$C.$\frac{3}{8}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.(1)已知tanα=3,計(jì)算$\frac{4sinα-2cosα}{5cosα+3sinα}$的值.
(2)已知$tanθ=-\frac{3}{4}$,求2+sinθcosθ-cos2θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知直線l1經(jīng)過點(diǎn)A(m,1),B(-1,m),直線l2經(jīng)過點(diǎn)P(1,2),Q(-5,0).
(1)若l1∥l2,求m的值;
(2)若l1⊥l2,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知α,β均為銳角,且$sinα=\frac{1}{2}sin({α+β})$,則α,β的大小關(guān)系是( 。
A.α<βB.α>βC.α=βD.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在△ABC中,已知AB=2,AC=3,$A=\frac{π}{3}$.
(1)求BC的長.
(2)求cos(A-C)的值.

查看答案和解析>>

同步練習(xí)冊答案