設Sn是等差數(shù)列{an}的前n項和,若a2=2,S4=14,則公差d等于(  )
A、2B、3C、4D、5
分析:由等差數(shù)列的通項公式和求和公式可得首項和公差d的方程組,解方程組可得.
解答:解:由等差數(shù)列的通項公式可得a2=a1+d=2,即a1=2-d,①
由等差數(shù)列的求和公式可得S4=4a1+
4×3
2
d=14,②
把①代入②可得4(2-d)+6d=14,解得d=3
故選:B
點評:本題考查等差數(shù)列的通項公式和求和公式,屬基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

有以下四個命題:
①對于任意實數(shù)a、b、c,若a>b,c≠0,則ac>bc;
②設Sn 是等差數(shù)列{an}的前n項和,若a2+a6+a10為一個確定的常數(shù),則S11也是一個確定的常數(shù);
③關于x的不等式ax+b>0的解集為(-∞,1),則關于x的不等式
bx-ax+2
>0的解集為(-2,-1);
④對于任意實數(shù)a、b、c、d,若a>b>0,c>d則ac>bd.
其中正確命題的是
 
(把正確的答案題號填在橫線上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設Sn是等差數(shù)列{an}的前n項和,S3=3(a2+a8),則
a3
a5
的值為(  )
A、
1
6
B、
1
3
C、
3
5
D、
5
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設Sn是等差數(shù)列{an}的前n項和,a12=-8,S9=-9,則S16=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設Sn是等差數(shù)列{an}的前n項和,且a4=-4,a9=4,則( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•青島一模)設Sn是等差數(shù)列{an}的前n項和,a1=2,a5=3a3,則S9=(  )

查看答案和解析>>

同步練習冊答案