5.如圖,在棱長(zhǎng)為a的正方體ABCD-A1B1C1D1中,E、F、M分別是棱AB、BC和DD1 所在直線(xiàn)上的動(dòng)點(diǎn).
(1)求∠EB1F的取值范圍;
(2)若N為面EB1F內(nèi)的一點(diǎn),且∠EBN=45°,∠FBN=60°,求∠B1BN的余弦值;
(3)若E、F分別是所在正方體棱的中點(diǎn),試問(wèn)在棱DD1上能否找到一點(diǎn)M,使BM⊥平面EFB1?若能,試確定點(diǎn)M的位置;若不能,請(qǐng)說(shuō)明理由.

分析 (1)設(shè)BE=x,BF=y,求出B1E,B1F,EF,利用余弦定理求解cos∠EB1F,然后求出∠EB1F的取值范圍.
(2)設(shè)N在BE、BF、BB1,三邊上的投影分別是E1、F1、G1,轉(zhuǎn)化求出∠B1BN,即可得到它的余弦值.
(3)設(shè)EF與BD的交點(diǎn)為G.連接B1G,說(shuō)明EF⊥平面BB1D1D,過(guò)B作BK⊥B1G于K,延長(zhǎng)后交D1D所在的直線(xiàn)于點(diǎn)M,則BM⊥平面B1EF.通過(guò)△B1BG∽△BDM,求解即可.

解答 (本題滿(mǎn)分16分)
解:(1)設(shè)BE=x,BF=y,則B1E=$\sqrt{{a}^{2}{+x}^{2}}$,B1F=$\sqrt{{a}^{2}+{y}^{2}}$,EF=$\sqrt{{x}^{2}+{y}^{2}}$,
所以cos∠EB1F=$\frac{{B}_{1}{E}^{2}+{B}_{1}{F}^{2}-E{F}^{2}}{2{B}_{1}E•{B}_{1}F}$=$\frac{2{a}^{2}}{2\sqrt{{x}^{2}+{a}^{2}}•\sqrt{{y}^{2}+{a}^{2}}}<1$,
∠EB1F的取值范圍為(0,$\frac{π}{2}$)(5分)
(2)解:設(shè)N在BE、BF、BB1,三邊上的投影分別是E1、F1、G1,
則由于∠EBN=45°,∠FBN=60°,∴BE1=BNcos45°=$\frac{\sqrt{2}}{2}$BN,B1F=BNcos60°=$\frac{1}{2}$BN.
∵BE12+BF12+BG12=BN2
∴BG1=$\frac{1}{2}$BN,即∠B1BN=60°,它的余弦值為$\frac{1}{2}$(11分)
(3)解:設(shè)EF與BD的交點(diǎn)為G.連接B1G,則由EF⊥BD以及EF⊥B1B,知EF⊥平面BB1D1D,
于是面B1EF⊥面BB1D1D,在面BB1D1D內(nèi)過(guò)B作BK⊥B1G于K,延長(zhǎng)后交D1D所在的直線(xiàn)于點(diǎn)M,則BM⊥平面B1EF.
在平面BB1D1D內(nèi),由△B1BG∽△BDM,
知$\frac{B1B}{BG}$=$\frac{BD}{DM}$,又B1B=a,BG=$\frac{\sqrt{2}}{4}$a,BD=$\sqrt{2}$a,∴DM=$\frac{a}{2}$.
這說(shuō)明點(diǎn)M在正方體的棱D1D上,且恰好為D1D的中點(diǎn).(16分)

點(diǎn)評(píng) 本題考查空間點(diǎn)線(xiàn)面距離的求法,直線(xiàn)與平面垂直的判定定理的應(yīng)用,余弦定理的應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.如圖是一組樣本數(shù)據(jù)的頻率分布直方圖,則依據(jù)圖形中的數(shù)據(jù),可以估計(jì)總體的平均數(shù)與中位數(shù)分別是(  )
A.12.5,12.5B.13.5,13C.13.5,12.5D.13,13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.cos(-330°)的值為( 。
A.$-\frac{{\sqrt{3}}}{2}$B.$\frac{1}{2}$C.$-\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,在棱長(zhǎng)為a的正方體ABCD-A1B1C1D1中,E、F、M分別是棱AB、BC和DD1 所在直線(xiàn)上的動(dòng)點(diǎn).
(1)求∠EB1F的取值范圍;
(2)若E、F分別為AB、BC的中點(diǎn),求二面角B1-EF-B的大;
(3)若E、F分別是所在正方體棱的中點(diǎn),試問(wèn)在棱DD1上能否找到一點(diǎn)M,使BM⊥平面EFB1?若能,試確定點(diǎn)M的位置;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.對(duì)任意一個(gè)非零復(fù)數(shù)z,定義集合Mz={w|w=zn,n∈N*}.設(shè)α是方程x+$\frac{1}{x}$=0的一個(gè)根,若在Ma中任取兩個(gè)數(shù),則其和為零的概率P=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知函數(shù)f(x)=sinx,x∈[-π,π],則不等式f(x)≤-$\frac{1}{2}$的解集為{x丨-$\frac{5π}{6}$≤x≤-$\frac{π}{6}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.在如圖所示的電路圖中,開(kāi)關(guān)a,b,c閉合與斷開(kāi)的概率都是$\frac{1}{2}$,且是相互獨(dú)立的,則燈亮的概率是(  )
A.$\frac{1}{8}$B.$\frac{3}{8}$C.$\frac{1}{4}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知向量$\overrightarrow{a}$=(1,k),$\overrightarrow$=(2,2),且$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow$垂直,那么k的值為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.某校高二奧賽班N名學(xué)生的物理測(cè)評(píng)成績(jī)(滿(mǎn)分120分)分布直方圖如圖,已知分?jǐn)?shù)在100-110的學(xué)生數(shù)有21人.
(1)求總?cè)藬?shù)N和分?jǐn)?shù)在110-115分的人數(shù)n;
(2)現(xiàn)準(zhǔn)備從分?jǐn)?shù)在110-115的n名學(xué)生(女生占$\frac{1}{3}$)中任選3人,求其中恰好含有一名女生的概率;
(3)為了分析某個(gè)學(xué)生的學(xué)習(xí)狀態(tài),對(duì)其下一階段的學(xué)生提供指導(dǎo)性建議,對(duì)他前7次考試的數(shù)學(xué)成績(jī)x(滿(mǎn)分150分),物理成績(jī)y進(jìn)行分析,如表是該生7次考試的成績(jī).
數(shù)學(xué)888311792108100112
物理949110896104101106
已知該生的物理成績(jī)y與數(shù)學(xué)成績(jī)x是線(xiàn)性相關(guān)的,若該生的數(shù)學(xué)成績(jī)達(dá)到130分,請(qǐng)你估計(jì)他的物理成績(jī)大約是多少?
附:對(duì)于一組數(shù)據(jù)(u1,v1),(u2,v2)…(un,vn),其回歸線(xiàn)v=α+βu的斜率和截距的最小二乘估計(jì)分別為:$\stackrel{∧}{β}$=$\frac{\sum_{i=1}^{n}({u}_{i}-\overline{u})({v}_{i}-\overline{v})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\stackrel{∧}{a}$=$\overline{v}$-$\stackrel{∧}{β}$$\overline{u}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案