(理科學(xué)生做)已知橢圓的左、右焦點(diǎn)分別為,,過的直線交橢圓于B,D兩點(diǎn),過的直線交橢圓于A,C兩點(diǎn),且,垂足為P

(Ⅰ)設(shè)P點(diǎn)的坐標(biāo)為,證明:

(Ⅱ)求四邊形ABCD的面積的最小值.

(理科學(xué)生做). 證明:(Ⅰ)橢圓的半焦距,

知點(diǎn)在以線段為直徑的圓上,

,

所以,

(Ⅱ)(。┊(dāng)的斜率存在且時(shí),的方程為,代入橢圓方程,并化簡得

設(shè),,則

,,

;

因?yàn)?img width=28 height=19 src="http://thumb.zyjl.cn/pic1/0688/467/442467.gif" >與相交于點(diǎn),且的斜率為

所以,

四邊形的面積

當(dāng)時(shí),上式取等號(hào).

(ⅱ)當(dāng)的斜率或斜率不存在時(shí),四邊形的面積

綜上,四邊形的面積的最小值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(理科學(xué)生做)已知
a
=(2,-3,0)
,
b
=(k,0,3)
,且(
a
b
)
=
3
,則實(shí)數(shù)k=
-
39
-
39

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

注意:第(3)小題平行班學(xué)生不必做,特保班學(xué)生必須做.
已知橢圓的焦點(diǎn)在x軸上,它的一個(gè)頂點(diǎn)恰好是拋物線x2=4y的焦點(diǎn),離心率e=
2
5
,過橢圓的右焦點(diǎn)F作與坐標(biāo)軸不垂直的直線l,交橢圓于A、B兩點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)M(m,0)是線段OF上的一個(gè)動(dòng)點(diǎn),且(
MA
+
MB
)⊥
AB
,求m的取值范圍;
(3)設(shè)點(diǎn)C是點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn),在x軸上是否存在一個(gè)定點(diǎn)N,使得C、B、N三點(diǎn)共線?若存在,求出定點(diǎn)N的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分16分)

   (文科學(xué)生做)已知命題p:函數(shù)在R上存在極值;

命題q:設(shè)A={x| x 2 + 2 x 3<0}, B={x| x 2 (a +1) x + a >0},若對(duì),都有

為真,為假,試求實(shí)數(shù)a的取值范圍。

 

(理科學(xué)生做)已知命題p:對(duì),函數(shù)有意義;

命題q:設(shè)A={x| x 2 + 2 x 3<0}, B={x| x 2 (a +1) x + a >0},若對(duì),都有;

為真,為假,試求實(shí)數(shù)a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆安徽省高二下學(xué)期期中考查數(shù)學(xué)卷 題型:選擇題

(理科學(xué)生做) 已知點(diǎn)P的雙曲線(a>0,b>0)右支上一點(diǎn),、 分別為雙曲線的左、右焦點(diǎn),I為△的內(nèi)心,若成立,則的值為                      ( 。

     A.        B.          C.          D.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案