已知角α的終邊經(jīng)過點(diǎn)P(6m,-8m)(m≠0)
(1)求tanα的值;
(2)求sinα-cosα的值.
考點(diǎn):同角三角函數(shù)基本關(guān)系的運(yùn)用,任意角的三角函數(shù)的定義
專題:三角函數(shù)的求值
分析:(1)由題意可得x=6m,y=8m,r=10|m|,根據(jù) tanα=
y
x
求得結(jié)果.
(2)當(dāng)m>0,r=10m,分別求得sinα=
y
r
和sinα=
x
r
的值,可得sinα-cosα的值.當(dāng)m<0,r=-10m,同理求得sinα-cosα的值.
解答: 解:(1)由題意可得x=6m,y=8m,r=10|m|,
∴tanα=
y
x
=-
4
3

(2)當(dāng)m>0,r=10m,sinα=
y
r
=
-8m
10m
=-
4
5
,sinα=
x
r
=
6m
10m
=
3
5
,sinα-cosα=-
7
5
.,
當(dāng)m<0,r=-10m,sinα=
y
r
=
-8m
-10m
=
4
5
,sinα=
x
r
=
6m
-10m
=-
3
5
,sinα-cosα=
7
5
.,
點(diǎn)評(píng):本題主要考查任意角的三角函數(shù)的定義,兩點(diǎn)間的距離公式的應(yīng)用,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

a,b,c表示不同直線,M表示平面,給出四個(gè)命題:
①若a∥M,b∥M,則a∥b或a,b相交或a,b異面;
②若b?M,a∥b,則a∥M;
③a⊥c,b⊥c,則a∥b;
④a⊥M,b⊥M,則a∥b.
其中正確命題為( 。
A、①④B、②③C、③④D、①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若向量
a
b
,
c
兩兩所成的角相等,且|
a
|=|
b
|=|
c
|=1,則|
a
+
b
+
c
|=( 。
A、0
B、3
C、3或 0
D、1或
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y=
1
2
x2將圓面x2+y2≤8分成兩部分,現(xiàn)在向圓面上均勻投點(diǎn),這些點(diǎn)落在圖中陰影部分的概率為
1
4
+
1
,求
2
0
8-x2
-
1
2
x2)dx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察下列各式:
3
(1+
1
3
)>
5
5
(1+
1
5
)>
7
,
7
(1+
1
7
)>
9
9
(1+
1
9
)>
11
 …
請(qǐng)你根據(jù)上述特點(diǎn),提煉出一個(gè)一般性命題,并用分析法加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

-
π
2
<x<0,sinx+cosx=
1
5
,
(1)求sinxcosx的值;
(2)求sinx-cosx的值;
(3)求tanx的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,a1=b且an=2an-1+
1
2n
(n>1,n∈N*
(Ⅰ)若b=-
1
8
,求a2,a3,a4;
(Ⅱ)若{an}是遞增數(shù)列,求實(shí)數(shù)b的取值范圍;
(Ⅲ)若?n∈N*,Sn≥S2恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=2,|
b
|=3
(1)若
a
,
b
兩向量所成角θ=
3
,求
a
b

(2)若
a
,
b
兩向量所成的角θ=
π
3
,求|
a
+2
b
|的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=(1-i)2+1+3i.
(1)若z2+az+b=1-i,求實(shí)數(shù)a,b的值;
(2)若復(fù)數(shù)(
1
z
+mi)2在復(fù)平面上對(duì)應(yīng)的點(diǎn)在第一象限,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案