6.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(1,5),則2$\overrightarrow{a}$+$\overrightarrow$的坐標(biāo)為(5,7).

分析 直接利用向量的坐標(biāo)運算法則求解即可.

解答 解:向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(1,5),
則2$\overrightarrow{a}$+$\overrightarrow$=(4,2)+(1,5)=(5,7).
故答案為:(5,7).

點評 本題考查向量的坐標(biāo)運算,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知3x=4,y=log${\;}_{\sqrt{3}}}$$\frac{27}{4}$,則x+$\frac{y}{2}$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.與直線y=-3x+1平行,且與直線y=2x+4交于x軸上的同一點的直線方程是( 。
A.y=-3x+4B.y=$\frac{1}{3}$x+4C.y=-3x-6D.y=$\frac{1}{3}$x+$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.偶函數(shù)f(x)的周期為3,當(dāng)x∈[0,1]時,f(x)=3x,則$\frac{f(lo{g}_{3}54)}{f(2015)}$的值為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.某幾何體的三視圖如圖所示,則該幾何體是( 。
A.棱柱B.圓柱C.棱錐D.圓錐

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)f(x)=$\left\{\begin{array}{l}{1-{x}^{2},x≤0}\\{{x}^{2}+x-3,x>0}\end{array}\right.$,則f[f(1)]=( 。
A.-3B.1C.2D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.定義在R上的函數(shù)f(x)對任意x1,x2(x1≠x2)都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,且函數(shù)y=f(x+1)的圖象關(guān)于原點對稱,若s,t滿足不等式f(s2-2s)≤-f(2t-t2+2),則當(dāng)1≤s≤4時,$\frac{t-2s}{s+t}$的取值范圍是( 。
A.[-3,-$\frac{1}{2}$)B.[-3,-$\frac{1}{2}$]C.[-5,-$\frac{1}{2}$)D.[-5,-$\frac{1}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)y=f(x)滿足f(x-1)=2x+3a,且f(a)=7.
(1)求函數(shù)f(x)的解析式;
(2)若g(x)=x•f(x)+λf(x)+x在[0,2]上最大值為2,求實數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知二次函數(shù)f(x)=ax2+2x+c(a≠0),函數(shù)f(x)對于任意的都滿足條件f(1+x)=f(1-x).
(1)若函數(shù)f(x)的圖象與y軸交于點(0,2),求函數(shù)f(x)的解析式;
(2)若函數(shù)f(x)在區(qū)間(0,1)上有零點,求實數(shù)c的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案