【題目】設函數(shù)f(x)= x3+x2﹣3x,若方程|f(x)|2+t|f(x)|+1=0有12個不同的根,則實數(shù)t的取值范圍為(  )
A.(﹣ ,﹣2)
B.(﹣∞,﹣2)
C.﹣ <t<﹣2
D.(﹣1,2)

【答案】C
【解析】解: ,

得x=﹣3,x=1,

由f′(x)>0得x>1或x<﹣3,即函數(shù)在(﹣∞,﹣3),(1,+∞)單調遞增,

由f′(x)<0得﹣3<x<1,則函數(shù)在(﹣3,1)單調遞減,

則函數(shù)的極大值為f(﹣3)=9,函數(shù)的極小值為 ,

根據(jù)函數(shù)的圖象可知,

設|f(x)|=m,可知m2+tm+1=0,原方程有12個不同的根,

則m2+tm+1=0方程應在 內有兩個不同的根,

設h(m)=m2+tm+1,

所以取值的范圍

故答案為:C

對f(x)求導,判斷出f(x)的單調區(qū)間,作出|f(x)|的大致圖象,設|f(x)|=m,可知m2+tm+1=0,原方程有12個不同的根,則m2+tm+1=0方程應在 內有兩個不同的根,根據(jù)一元次方程在給定區(qū)間有兩個根得出不等式,求得t的取值范圍.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某種產品的質量以其質量指標衡量,并依據(jù)質量指標值劃分等級如表:

質量指標值m

m<185

185≤m<205

M≥205

等級

三等品

二等品

一等品

從某企業(yè)生產的這種產品中抽取200件,檢測后得到如下的頻率分布直方圖:

(1)根據(jù)以上抽樣調查的數(shù)據(jù),能否認為該企業(yè)生產這種產品符合“一、二等品至少要占到全部產品的92%的規(guī)定”?
(2)在樣本中,按產品等級用分層抽樣的方法抽取8件,再從這8件產品中隨機抽取4件,求抽取的4件產品中,一、二、三等品都有的概率;
(3)該企業(yè)為提高產品的質量,開展了“質量提升月”活動,活動后再抽樣檢測,產品質量指標值X近似滿足X~N(218,140),則“質量提升月”活動后的質量指標值的均值比活動前大約提升了多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知ABCD為平行四邊形,∠A=60°,線段AB上點F滿足AF=2FB,AB長為12,點E在CD上,EF∥BC,BD⊥AD,BD與EF相交于N.現(xiàn)將四邊形ADEF沿EF折起,使點D在平面BCEF上的射影恰在直線BC上.

(Ⅰ)求證:BD⊥平面BCEF;
(Ⅱ)求折后直線DE與平面BCEF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】極坐標系的極點為直角坐標系的原點,極軸為x軸的正半軸,兩坐標系中的單位長度相同,已知曲線C的極坐標方程為ρ=2(sinθ+cosθ).
(Ⅰ)求C的直角坐標方程;
(Ⅱ)直線 (t為參數(shù))與曲線C交于A,B兩點,與y軸交于E,求|EA|+|EB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: + =1(a>b>0)的離心率為 ,右焦點為F,右頂點為E,P為直線x= a上的任意一點,且( + =2.

(Ⅰ)求橢圓C的方程;
(Ⅱ)過F垂直于x軸的直線AB與橢圓交于A,B兩點(點A在第一象限),動直線l與橢圓C交于M,N兩點,且M,N位于直線AB的兩側,若始終保持∠MAB=∠NAB,求證:直線MN的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線C的參數(shù)方程為 (φ為參數(shù)),以原點為極點,x軸的非負半軸為極軸建立極坐標系.
(Ⅰ)求曲線C的極坐標方程;
(Ⅱ)已知傾斜角為135°且過點P(1,2)的直線l與曲線C交于M,N兩點,求 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國南宋時期的數(shù)學家秦九韶在他的著作《數(shù)書九章》中提出了計算多項式f(x)=anxn+an﹣1xn﹣1+…+a1x+a0的值的秦九韶算法,即將f(x)改寫成如下形式:f(x)=(…((anx+an﹣1)x+an﹣2)x+…+a1)x+a0 , 首先計算最內層一次多項式的值,然后由內向外逐層計算一次多項式的值,這種算法至今仍是比較先進的算法,將秦九韶算法用程序框圖表示如圖,則在空白的執(zhí)行框內應填入(  )

A.v=vx+ai
B.v=v(x+ai
C.v=aix+v
D.v=ai(x+v)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=xex﹣ax(a∈R,a為常數(shù)),e為自然對數(shù)的底數(shù).
(1)若函數(shù)f(x)的任意一條切線都不與y軸垂直,求a的取值范圍;
(2)當a=2時,求使得f(x)+k>0成立的最小正整數(shù)k.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在極坐標系中,曲線C的極坐標方程為ρ=2cosθ+2sinθ(0≤θ<2π),點M(1, ),以極點O為原點,以極軸為x軸的正半軸建立平面直角坐標系.已知直線l: (t為參數(shù))與曲線C交于A,B兩點,且|MA|>|MB|.
(1)若P(ρ,θ)為曲線C上任意一點,求ρ的最大值,并求此時點P的極坐標;
(2)求

查看答案和解析>>

同步練習冊答案