已知雙曲線的右準(zhǔn)線l2與一條漸近線l交于點(diǎn)P,F(xiàn)是雙曲線的右焦點(diǎn).
(Ⅰ)求證:PF⊥l;
(Ⅱ)若,且雙曲線的離心率,求該雙曲線的方程;
(Ⅲ)若過點(diǎn)A(2,1)的直線與(Ⅱ)中的雙曲線交于兩點(diǎn)P1,P2,求線段P1P2的中點(diǎn)M的軌跡方程.
【答案】分析:(Ⅰ)由雙曲線方程求出雙曲線的右準(zhǔn)線方程和一條漸近線方程,聯(lián)立求出P點(diǎn)的坐標(biāo),求出PF所在直線的斜率,由斜率制劑等于-1證明PF⊥l;
(Ⅱ)由(Ⅰ)中的證明可知,|PF|為F(c,0)到l:bx-ay=0距離,由點(diǎn)到直線的距離公式列一個(gè)關(guān)于a,b,c的關(guān)系式,再由離心率得一關(guān)系式,結(jié)合a2+b2=c2求解a,b的值,則雙曲線的方程可求;
(Ⅲ)分斜率存在和不存在得到過點(diǎn)A的直線方程,斜率存在時(shí)把直線方程和雙曲線方程聯(lián)立,利用根與系數(shù)關(guān)系得到M點(diǎn)的參數(shù)方程,消參后即可得到答案,然后驗(yàn)證斜率不存在時(shí)的情況.
解答:(Ⅰ)證明:右準(zhǔn)線為,由對(duì)稱性,不妨設(shè)漸近線l為,則
又F(c,0),∴
又∵,∴,∴PF⊥l;
(Ⅱ)解:∵|PF|為F(c,0)到l:bx-ay=0距離,∴,即b=
,∴,解得a2=1.
故雙曲線方程為
(Ⅲ)解:設(shè)M(x,y),
當(dāng)過點(diǎn)A的直線斜率存在時(shí),設(shè)直線方程為y-1=k(x-2),
,
可得(2-k2)x2-2k(1-2k)x-(1-2k)2-2=0.
當(dāng)(2-k2)≠0,△=(1-2k)24k2+4(2-k2)[(1-2k)2+2]>0時(shí),
設(shè)P1(x1,y1),P2(x2,y2),∴(1)(2)
當(dāng)時(shí),此時(shí)M(0,0).
當(dāng)時(shí),顯然y≠0.此時(shí)(1)÷(2)得,將其代入(2),
.∵y≠0,∴有2x2-y2-4x+y=0.顯然(0,0)也滿足此方程.
當(dāng)直線的斜率不存在時(shí),此時(shí)直線方程為x=2,則P1P2中點(diǎn)為(2,0)符合上式.
綜上可知,M點(diǎn)的軌跡方程為2x2-y2-4x+y=0.
點(diǎn)評(píng):本題主要考查了直線與圓錐曲線的位置關(guān)系,考查了雙曲線的性質(zhì),直線與曲線聯(lián)立,根據(jù)方程的根與系數(shù)的關(guān)系解題是處理這類問題的最為常用的方法,但圓錐曲線的特點(diǎn)是計(jì)算量比較大,要求考生具備較強(qiáng)的運(yùn)算推理,是難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

曲線C是中心在原點(diǎn),焦點(diǎn)在x軸上的雙曲線的右支,已知它的右準(zhǔn)線方程為l:x=
1
2
,一條漸近線方程是y=
3
x
,線段PQ是過曲線C右焦點(diǎn)F的一條弦,R是弦PQ的中點(diǎn).
(1)求曲線C的方程;
(2)當(dāng)點(diǎn)P在曲線C上運(yùn)動(dòng)時(shí),求點(diǎn)R到y(tǒng)軸距離的最小值;
(3)若在直線l的左側(cè)能作出直線m:x=a,使點(diǎn)R在直線m上的射影S滿足
PS
QS
=0.當(dāng)點(diǎn)P在曲線C上運(yùn)動(dòng)時(shí),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

曲線C是中心在原點(diǎn),焦點(diǎn)在x軸上的雙曲線的右支,已知它的右準(zhǔn)線方程為l:數(shù)學(xué)公式,一條漸近線方程是數(shù)學(xué)公式,線段PQ是過曲線C右焦點(diǎn)F的一條弦,R是弦PQ的中點(diǎn).
(1)求曲線C的方程;
(2)當(dāng)點(diǎn)P在曲線C上運(yùn)動(dòng)時(shí),求點(diǎn)R到y(tǒng)軸距離的最小值;
(3)若在直線l的左側(cè)能作出直線m:x=a,使點(diǎn)R在直線m上的射影S滿足數(shù)學(xué)公式=0.當(dāng)點(diǎn)P在曲線C上運(yùn)動(dòng)時(shí),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年廣西南寧市高三第一次適應(yīng)性測(cè)試數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知雙曲線的右焦點(diǎn)為F,右準(zhǔn)線為l,離心率為,過y軸上一點(diǎn)A(0,b)作AM⊥l,垂足為M,則直線FM的斜率為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年四川省資陽市高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:解答題

如圖,已知雙曲線的右準(zhǔn)線交x軸于A,虛軸的下端點(diǎn)為B,過雙曲線的右焦點(diǎn)F(c,0)作垂直于x軸的直線交雙曲線于P,過點(diǎn)A、B的直線與FP相交于點(diǎn)D,且(O為坐標(biāo)原點(diǎn)).
(Ⅰ)求雙曲線的離心率;
(Ⅱ)若a=2,過點(diǎn)(0,-2)的直線l交該雙曲線于不同兩點(diǎn)M、N,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案