【題目】如圖,在各棱長均為2的正三棱柱中, 分別為棱與的中點, 為線段上的動點,其中, 更靠近,且.
(1)證明: 平面;
(2)若與平面所成角的正弦值為,求異面直線與所成角的余弦值.
【答案】(1)證明見解析.
(2).
【解析】試題分析:(1)根據(jù)正三角形性質(zhì)得,結(jié)合線面垂直得.因此可得平面,即.再根據(jù),得平面,(2)先根據(jù)條件建立空間直角坐標(biāo)系,設(shè)立各點坐標(biāo),利用方程組解平面法向量,根據(jù)向量數(shù)量積求夾角,再根據(jù)線面角與向量夾角互余關(guān)系列方程,解得N坐標(biāo),最后根據(jù)向量數(shù)量積求異面直線與所成角的余弦值.
試題解析:解:(1)證明:由已知得為正三角形,為棱的中點,
∴,
在正三棱柱中,底面,則.
又,∴平面,∴.
易證,又,∴平面.
(2)解:取的中點,的中點,則,,
以為坐標(biāo)原點,建立如圖所示的空間直角坐標(biāo)系,
則,,,,
設(shè) ,
則 ,
易知是平面的一個法向量,
∴ ,解得.
∴, , ,,
∴ ,
∴異面直線與所成角的余弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在區(qū)間上有最小值1,最大值9.
(1)求實數(shù)a,b的值;
(2)設(shè),若不等式在區(qū)間上恒成立,求實數(shù)k的取值范圍;
(3)設(shè)),若函數(shù)有三個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】先閱讀下列不等式的證法,再解決后面的問題:
已知,,求證:.
證明:構(gòu)造函數(shù),
即
.
因為對一切,恒有,
所以,從而得.
(1)若,,請寫出上述結(jié)論的推廣式;
(2)參考上述證法,對你推廣的結(jié)論加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中錯誤的是( )
A.先把高二年級的2000名學(xué)生編號:1到2000,再從編號為1到50的學(xué)生中隨機抽取1名學(xué)生,其編號為,然后抽取編號為,,,……的學(xué)生,這種抽樣方法是系統(tǒng)抽樣法.
B.一組數(shù)據(jù)的方差為,平均數(shù)為,將這組數(shù)據(jù)的每一個數(shù)都乘以2,所得的一組新數(shù)據(jù)的方差和平均數(shù)為,.
C.若兩個隨機變量的線性相關(guān)性越強,則相關(guān)系數(shù)的值越接近于1.
D.若一組數(shù)據(jù)1,,3的平均數(shù)是2,則該組數(shù)據(jù)的方差是.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面上動點到點的距離與到直線的距離之比為,記動點的軌跡為曲線.
(1)求曲線的方程;
(2)設(shè)是曲線上的動點,直線的方程為.
①設(shè)直線與圓交于不同兩點, ,求的取值范圍;
②求與動直線恒相切的定橢圓的方程;并探究:若是曲線: 上的動點,是否存在直線: 恒相切的定曲線?若存在,直接寫出曲線的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)列是公差為2的等差數(shù)列,數(shù)列滿足b1=1,b2=2,且anbn+bn=nbn+1.
(1)求數(shù)列,的通項公式;
(2)設(shè)數(shù)列滿足,數(shù)列的前n項和為,若不等式
對一切n∈N*恒成立,求實數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場在促銷期間規(guī)定:商場內(nèi)所有商品按標(biāo)價的出售,當(dāng)顧客在商場內(nèi)消費一定金額后,按如下方案獲得相應(yīng)金額的獎券:
消費金額(元)的范圍 | … | ||||
獲得獎券的金額(元) | 30 | 60 | 100 | 130 | … |
根據(jù)上述促銷方法,顧客在該商場購物可以獲得雙重優(yōu)惠,例如:購買標(biāo)價為400元的商品,則消費金額為320元,獲得的優(yōu)惠額為:元,設(shè)購買商品得到的優(yōu)惠率=(購買商品獲得的優(yōu)惠額)/(商品標(biāo)價),試問:
(1)若購買一件標(biāo)價為1000元的商品,顧客得到的優(yōu)惠率是多少?
(2)對于標(biāo)價在(元)內(nèi)的商品,顧客購買標(biāo)價為多少元的商品,可得到不小于的優(yōu)惠率?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com