【題目】如圖,在中, , 中點, (不同于點),延長,將沿折起,得到三棱錐,如圖所示.

Ⅰ)若的中點,求證:直線平面

Ⅱ)求證:

Ⅲ)若平面平面,試判斷直線與直線能否垂直?請說明理由.

【答案】1)見解析(2)見解析(3)不能垂直

【解析】試題分析:(1由三角形中位線性質(zhì)得,再根據(jù)線面平行判定定理得結(jié)論2由折疊知, 由線面垂直判定定理得平面,即得結(jié)論3假設(shè)直線與直線垂直,則可得直線與直線垂直,與題設(shè)E與D不同矛盾,假設(shè)不成立.

試題解析:證明:∵、分別為、中點,

,

又∵平面,

平面,

平面

,

,

點,

平面,

平面,

直線與直線不能垂直,

平面平面,

平面平面,

,

平面,

平面,

平面,

,

又∵,

,

假設(shè),

點,

平面,

,

為銳角矛盾,

∴直線與直線不能垂直.

點睛:立體幾何中折疊問題,要注重折疊前后垂直關(guān)系的變化,不變的垂直關(guān)系是解決問題的關(guān)鍵條件. 探索性問題通常用“肯定順推法”,將不確定性問題明朗化.其步驟為假設(shè)滿足條件的位置關(guān)系存在,運用分析法思想進(jìn)行推理,直至已知或矛盾.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=﹣x3+ax2+bx+c圖象上的點P(1,m)處的切線方程為y=﹣3x+1
(1)若函數(shù)f(x)在x=﹣2時有極值,求f(x)的表達(dá)式.
(2)若函數(shù)f(x)在區(qū)間[﹣2,0]上單調(diào)遞增,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓的半焦距為c,且過點,原點O到經(jīng)過兩點(c,0),(0,b)的直線的距離為.

(1)求橢圓E的方程;

(2)A為橢圓E上異于頂點的一點,點P滿足,過點P的直線交橢圓EB,C兩點,且,若直線OA,OB的斜率之積為,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在棱長為的正方體上,分別用過共頂點的三條棱中點的平面截該正方形,則截去個三棱錐后,剩下的幾何體的體積是( ).

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx+c與x軸交于點A和點B(3,0),與y軸交于點C(0,3).

(1)求拋物線的解析式;
(2)若點M是拋物線在x軸下方上的動點,過點M作MN∥y軸交直線BC于點N,求線段MN的最大值;
(3)在(2)的條件下,當(dāng)MN取得最大值時,在拋物線的對稱軸l上是否存在點P,使△PBN是等腰三角形?若存在,請直接寫出所有點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在周長為12的菱形ABCD中,AE=1,AF=2,若P為對角線BD上一動點,則EP+FP的最小值為( 。

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列是遞增數(shù)列,其前項和為,且

I)求數(shù)列的通項公式;

II設(shè),求數(shù)列的前 項和.

查看答案和解析>>

同步練習(xí)冊答案