19.若$z=\frac{3-i}{1+i}$(其中i是虛數(shù)單位),則|z+i|=(  )
A.$\sqrt{5}$B.$\sqrt{2}$C.5D.2

分析 利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡z,然后代入|z+i|,利用復(fù)數(shù)模的計(jì)算公式求解.

解答 解:∵$z=\frac{3-i}{1+i}$=$\frac{(3-i)(1-i)}{(1+i)(1-i)}=\frac{2-4i}{2}=1-2i$,
∴|z+i|=|1-2i+i|=|1-i|=$\sqrt{2}$.
故選:B.

點(diǎn)評 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)模的求法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.甲、乙兩人進(jìn)行圍棋比賽,每局比賽甲勝的概率為$\frac{1}{3}$,乙勝的概率為$\frac{2}{3}$,規(guī)定某人先勝三局則比賽結(jié)束,求比賽局?jǐn)?shù)X的分布列和均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知f(x)=x2-xf′(0)-1,則f(2017)的值為( 。
A.2013×2015B.2014×2016C.2015×2017D.2016×2018

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)$f(x)=\frac{e^x}{{{e^x}+1}}$,{an}為等比數(shù)列,an>0且a1009=1,則f(lna1)+f(lna2)+…+f(lna2017)=( 。
A.2007B.$\frac{1}{1009}$C.1D.$\frac{2017}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖所示,在長方體ABCD-A1B1C1D1中,底面ABCD是邊長為1的正方形,AA1=2,P為棱BB1上的一個(gè)動點(diǎn).
(1)求三棱錐C-PAA1的體積;
(2)當(dāng)A1P+PC取得最小值時(shí),求證:PD1⊥平面PAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在△ABC中,角A、B、C的對邊分別為a、b、c,且$cos({A-\frac{π}{3}})=2cosA$.
(1)若b=2,△ABC面積為$3\sqrt{3}$,求a;
(2)若$cos2C=1-\frac{a^2}{{6{b^2}}}$,求角B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.以下數(shù)表的構(gòu)造思路源于我國南宋數(shù)學(xué)家楊輝所著的《詳解九章算術(shù)》一書中的“楊輝三角”.

該表由若干數(shù)字組成,從第二行起,每一行的數(shù)字均等于其“肩上”兩數(shù)之和,表中最后一行今有一個(gè)數(shù),則這個(gè)數(shù)為( 。
A.2017×22016B.2017×22014C.2016×22017D.2016×22018

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)$f(x)=\frac{sinπx}{{({{x^2}+1})({{x^2}-2x+2})}}$,下面是關(guān)于此函數(shù)的有關(guān)命題,其中正確的有( 。
①函數(shù)f(x)是周期函數(shù);
②函數(shù)f(x)既有最大值又有最小值;
③函數(shù)f(x)的定義域?yàn)镽,且其圖象有對稱軸;
④對于任意的x∈(-1,0),f'(x)<0(f'(x)是函數(shù)f(x)的導(dǎo)函數(shù)).
A.②③B.①③C.②④D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在各棱長均為4的直四棱柱ACCD-A1B1C1D1中,底面ABCD為菱形,∠BAD=60°,E為梭BB1上一點(diǎn),且BE=3EB1
(1)求證:平面ACE丄平面BDD1B1
(2)平面AED1將四棱柱ABCD-A1B1C1D1分成上、下兩部分.求這兩部分的休積之比
(梭臺的體積公式為V=$\frac{1}{3}$(S′+$\sqrt{SS′}$+S)h,其中S',S分別為上、下底面面積,h為棱臺的高)

查看答案和解析>>

同步練習(xí)冊答案