(本小題滿分12分) 已知函數(shù),數(shù)列,滿足條件:
(1)求證:數(shù)列為等比數(shù)列;
(2)令,Tn是數(shù)列的前n項和,求使成立的最小的n值.
解:(1) 證明:由題意得
········································································ 3分
又∵   
················································································ 4分
數(shù)列{bn + 1}是以1為首項,2為公比的等比數(shù)列············································· 5分
(2) 由 (1) 可知,,∴·········································· 7分
················································ 9分

············································ 10分
,得
∴滿足條件的n的最小值為10···································································· 12分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

定義:在數(shù)列{an}中,若滿足-=d(n∈N*,d為常數(shù)),我們稱{an}為“比等差數(shù)列”.已知在“比等差數(shù)列”{an}中,a1=a2=1,a3=2,則的個位數(shù)字是(  )
A.3B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知數(shù)列的各項均為正數(shù),是數(shù)列的前n項和,且
(1)求數(shù)列的通項公式;
(2)的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

等差數(shù)列{an}中,已知a1,a2+a5=4,an=33,則n為   (   )
A.50B.49C.48D.47

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)已知等比數(shù)列{an}的前n項和為Sn="3" · 2n-3。
(1)求a1、a2的值及數(shù)列{an}的通項公式;
(2)設bn=,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

ABCD-A1B1C1D1單位正方體,黑白兩個螞蟻從點A出發(fā)沿棱向前爬行,每走完一條棱稱為“走完一段”。白螞蟻爬地的路線是AA1→A1D1→……,黑螞蟻爬行的路線是AB→BB1→……,它們都遵循如下規(guī)則:所爬行的第與第段所在直線必須是異面直線(其中是自然數(shù))。設白,黑螞蟻都走完2011段后各停止在正方體的某個頂點處,這時黑,白兩螞蟻的距離是(   )
A.1B.C.D.0

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
已知數(shù)列的前n項和與通項之間滿足關系
(I)求數(shù)列的通項公式;
(II)設
(III)若,求的前n項和

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知等差數(shù)列滿足:,的前n項和為
(Ⅰ)求;
(Ⅱ)令bn=(),求數(shù)列的前n項和

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

等差數(shù)列{}中,,,則此數(shù)列的前15項之和是         

查看答案和解析>>

同步練習冊答案