如圖,已知AB為圓O的直徑,AC與圓O相切于點A,CE∥AB交圓O于D、E兩點,若AB=6,BE=2,則線段CD的長為
 
考點:圓內(nèi)接多邊形的性質(zhì)與判定
專題:選作題,立體幾何
分析:設CD=x,則CE=6-x,利用切割線定理和勾股定理即可得出AD,再利用同圓的等弧所對的弦相等即可得出.
解答: 解:設CD=x,則CE=6-x.
∵AC與圓O相切于點A,∴AC⊥AB,AC2=CD•CE=x(6-x).
∴AD2=AC2+CD2=6x.
∵CE∥AB,∴AD=BE,∴6x=4,
∴x=
2
3

故答案為:
2
3
點評:熟練掌握矩形和圓的性質(zhì)、切割線定理和勾股定理、同圓的等弧所對的弦相等是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
36-(x-10)2
的圖象上存在不同的三點到原點的距離構成等比數(shù)列,則以下不可能成為該等比數(shù)列的公比的數(shù)是( 。
A、
3
4
B、
3
C、2
D、
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)求函數(shù)f(x)=
1-x
-
x
的定義域和值域.
(2)求證函數(shù)f(x)=a-
1
x
在(0,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若集合A={x|-2<x<1},B={x|0<x<2},則A∩∁UB=( 。
A、{x|-1<x<1}
B、{x|-2<x<1}
C、{x|-2<x≤0}
D、{x|0<x<1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=x2+2,g(x)=4x-1的定義域都是集合A,函數(shù)f(x)和g(x)的值域分別為S和T.
(Ⅰ)若A=[1,2],求S∩T;
(Ⅱ)若A=[1,m](m>1),且S=T,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若橢圓
x2
a2
+
y2
b2
=1(a>b>0)左、右焦點分別為F1(-c,0),F(xiàn)2(c,0),其離心率為
1
2
,且過點(-1,
3
2
).
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線l:y=-
1
2
x+m與橢圓交于A、B兩點,與以F1F2為直徑的圓交于C、D兩點,且滿足
|AB|
|CD|
=
5
3
4
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)與雙曲線
x2
2
-y2=1有公共焦點,且離心率為
3
2
.問:以此橢圓的上頂點B為直角頂點作橢圓的內(nèi)接等腰直角△ABC,這樣的直角三角形是否存在?若存在,請說明有幾個;若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
k(x-1)
x

(1)當k=e時,求函數(shù)h(x)=f(x)-g(x)的單調(diào)區(qū)間和極值;
(2)若f(x)≥g(x)恒成立,求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l1:2x-y+3=0和直線l2:x=-1,則拋物線y2=4x上一動點P到直線l1和l2的距離值和的最小值是
 

查看答案和解析>>

同步練習冊答案