精英家教網 > 高中數學 > 題目詳情
若曲線f(x)=x-
1
2
在點(a,f(a))處的切線與兩條坐標軸圍成的三角形的面積為18,則a=( 。
A.64B.32C.16D.8
f(x)=x-
1
2
,(x>0),
∴f'(x)=-
1
2
x-
3
2
,
∴在點(a,f(a))處的切線斜率k=f'(a)=-
1
2
a-
3
2
(a>0).
且f(a)=a-
1
2
,
∴切線方程為y-a-
1
2
=-
1
2
a-
3
2
(x-a),
令x=0,則y=
3
2
a-
1
2
,
令y=0,則x=3a,即切線與坐標軸的交點坐標為(0,
3
2
a-
1
2
),(3a,0),
∴三角形的面積為
1
2
×3a×
3
2
a-
1
2
=
9
4
a
1
2
=18
,
a
1
2
=8
,
∴a=64.
故選:A.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

曲線y=sinx在x=
π
2
處的切線方程是(  )
A.y=0B.y=x+1C.y=xD.y=1

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數f(x)=
1
3
x3-
3
2
x2+2x+5

(Ⅰ)求f(x)的單調區(qū)間;
(Ⅱ)若曲線y=f(x)與y=2x+m有三個不同的交點,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

曲線y=x3+1在x=0處的切線的斜率是( 。
A.-1B.0C.
1
2
D.1

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

曲線y=log2x在點(1,0)處的切線與坐標軸所圍三角形的面積等于______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

某廠生產產品x件的總成本c(x)=
1
12
x3
(萬元),已知產品單價P(萬元)與產品件數x滿足:P2=
k
x
,生產1件這樣的產品單價為16萬元.
(1)設產量為x件時,總利潤為L(x)(萬元),求L(x)的解析式;
(2)產量x定為多少件時總利潤L(x)(萬元)最大?

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數f(x)=ax+blnx.
(1)當x=2時f(x)取得極小值2-2ln2,求a,b的值;
(2)當b=-1時,若在區(qū)間(0,e]上至少存在一點x0,使得f(x0)<0成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數f(x)=
1
3
x3+
1-a
2
x2-ax-a,x∈R,其中a>0.
(1)求函數f(x)的單調區(qū)間;
(2)若函數f(x)在區(qū)間(-2,0)內恰有兩個零點,求a的取值范圍;
(3)當a=1時,設函數f(x)在區(qū)間[t,t+3]上的最大值為M(t),最小值為m(t).記g(t)=M(t)-m(t),求函數g(t)在區(qū)間[-3,-1]上的最小值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數f(x)=alnx+x2(a為實常數).
(1)當a=-4時,求函數f(x)在[1,e]上的最大值及相應的x值;
(2)當x∈[1,e]時,討論方程f(x)=0根的個數.
(3)若a>0,且對任意的x1,x2∈[1,e],都有|f(x1)-f(x2)|≤|
1
x1
-
1
x2
|
,求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案