【題目】在直角坐標(biāo)系已知一動(dòng)圓經(jīng)過(guò)點(diǎn)且在軸上截得的弦長(zhǎng)為4,設(shè)動(dòng)圓圓心的軌跡為曲線

1求曲線的方程;

2過(guò)點(diǎn)作互相垂直的兩條直線,,與曲線交于,兩點(diǎn)與曲線交于,兩點(diǎn),線段,的中點(diǎn)分別為,,求證:直線過(guò)定點(diǎn),并求出定點(diǎn)的坐標(biāo)

【答案】1;2證明見(jiàn)解析;

【解析】

試題分析:1設(shè)圓心坐標(biāo),利用圓心的半徑相等可建立等式,求得曲線的方程;2易知兩直線的斜率都存在,設(shè)直線斜率可得直線方程,與拋物線方程聯(lián)立可得點(diǎn)坐標(biāo),同理可得的坐標(biāo),得直線的方程,得其過(guò)定點(diǎn),且得出定點(diǎn)坐標(biāo)

試題解析:1設(shè)圓心,依題意有

,即得,

曲線的方程為

2易知直線,的斜率存在且不為0,設(shè)直線的斜率為,,

則直線,,

,

,

,,

同理得

當(dāng)時(shí),直線的方程為;

當(dāng)時(shí),直線的斜率為,

直線的方程為,,

直線過(guò)定點(diǎn),其坐標(biāo)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是定義在上的奇函數(shù),且,若時(shí),有成立.

(1)判斷上的單調(diào)性,并用定義證明;

(2)解不等式;

(3)若對(duì)所有的恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)a>0a≠1)是奇函數(shù).

1)求常數(shù)k的值;

2)若已知f1=,且函數(shù)在區(qū)間[1,+∞])上的最小值為—2,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有甲、乙二人去看望高中數(shù)學(xué)張老師,期間他們做了一個(gè)游戲,張老師的生日是日,張老師把告訴了甲,把告訴了乙,然后張老師列出來(lái)如下10個(gè)日期供選擇: 2月5日,2月7日,2月9日,3月2日,3月7日,5月5日,5月8日,7月2日,7月6日,7月9日.看完日期后,甲說(shuō)“我不知道,但你一定也不知道”,乙聽了甲的話后,說(shuō)“本來(lái)我不知道,但現(xiàn)在我知道了”,甲接著說(shuō),“哦,現(xiàn)在我也知道了”.請(qǐng)問(wèn)張老師的生日是_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在棱長(zhǎng)為1的正方體中,E,F(xiàn)分別為線段CD和上的動(dòng)點(diǎn),且滿足,則四邊形所圍成的圖形(如圖所示陰影部分)分別在該正方體有公共頂點(diǎn)的三個(gè)面上的正投影的面積之和( 。

A. 有最小值B. 有最大值C. 為定值3D. 為定值2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解重慶市高中學(xué)生在面對(duì)新高考模式“3+1+2”的科目選擇中,物理與歷史的二選一是否與性別有關(guān),某高中隨機(jī)對(duì)該校50名高一學(xué)生進(jìn)行了問(wèn)卷調(diào)查得到相關(guān)數(shù)據(jù)如下列聯(lián)表:

選物理

選歷史

合計(jì)

男生

5

女生

10

合計(jì)

己知在這50人中隨機(jī)抽取1人,抽到選物理的人的概率為。

1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整,并判斷是否有99.5%的把握認(rèn)為物理與歷史的二選一與性別有關(guān)?

0.15

0.10

0.05

0.01

0.005

0.001

k

2.072

2.706

3.841

6.635

7.879

10.828

(參考公式,其中為樣本容量)

2)己知在選物理的10位女生中有3人選擇了化學(xué)、地理,有5人選擇了化學(xué)、生物,有2人選擇了生物、地理,現(xiàn)從這10人中抽取3人進(jìn)行更詳細(xì)的學(xué)科意愿調(diào)查,記抽到的3人中選擇化學(xué)的有X人,求隨機(jī)變量X的分布列及數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍;

(2)證明:當(dāng)時(shí),函數(shù)有最小值,設(shè)最小值為,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若存在實(shí)數(shù),使得,求正實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)求函數(shù)上的單調(diào)遞增區(qū)間;

2)將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,再將圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的倍(縱坐標(biāo)不變),得到函數(shù)的圖象.求證:存在無(wú)窮多個(gè)互不相同的整數(shù),使得.

查看答案和解析>>

同步練習(xí)冊(cè)答案