已知三角形的三邊分別為,內(nèi)切圓的半徑為,則三角形的面積為;四面體的四個(gè)面的面積分別為,內(nèi)切球的半徑為。類比三角形的面積可得四面體的體積為(      )。

A.        B.

C.        D.

 

【答案】

B

【解析】解:因?yàn)槔妹娣e相等得到了三角形的面積為;那么推廣到空間,轉(zhuǎn)化為利用體積相等來(lái)求解得到,即為,選B

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三角形的三邊分別為x,y與2,請(qǐng)?jiān)谥苯亲鴺?biāo)系內(nèi)用平面區(qū)域表示點(diǎn)P(x,y)的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三角形的三邊分別為a,b,c,內(nèi)切圓的半徑為r,則三角形的面積S=
1
2
(a+b+c)•r,四面體的四個(gè)面的面積分別為S1,S2,S3,S4,內(nèi)切球的半徑為R,類比三角形的面積可得四面體的體積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三角形的三邊分別為a,b,c,內(nèi)切圓的半徑為r,則三角形的面積為s=
1
2
(a+b+c)r;四面體的四個(gè)面的面積分別為s1,s2,s3,s4,內(nèi)切球的半徑為R.類比三角形的面積可得四面體的體積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三角形的三邊分別為,內(nèi)切圓的半徑為,則三角形的面積為;四面體的四個(gè)面的面積分別為,內(nèi)切球的半徑為.類比三角形的面積可得四面體的體積為(      )

A.         B. 

C.         D.

查看答案和解析>>

同步練習(xí)冊(cè)答案