若雙曲線的一條漸近線的傾斜角為60°,則雙曲線的離心率等于   
【答案】分析:求出漸近線的斜率,利用雙曲線的漸近線的斜率公式列出方程,求出a的值,利用雙曲線的三參數(shù)的關(guān)系求出半焦距,求出離心率.
解答:解:∵一條漸近線的傾斜角為60
∴漸近線的斜率為k=tan60°=,

解得a=3
設(shè)半焦距為c則
所以雙曲線的離心率
故答案為:2.
點(diǎn)評(píng):本題考查雙曲線的三參數(shù)關(guān)系、雙曲線的漸近線方程與雙曲線的焦點(diǎn)位置有關(guān).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px(p>0)上一點(diǎn)M(1,m)(m>0)到其焦點(diǎn)的距離為5,雙曲線
x2
a
-y2=1
的左頂點(diǎn)為A,若雙曲線的一條漸近線與直線AM平行,則實(shí)數(shù)a的值是( 。
A、
1
25
B、
1
9
C、
1
5
D、
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=8x的準(zhǔn)線與雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
相交于A,B兩點(diǎn),點(diǎn)F是拋物線的焦點(diǎn),若雙曲線的一條漸近線方程是y=2
2
x
,且△FAB是直角三角形,則雙曲線的標(biāo)準(zhǔn)方程是( 。
A、
x2
16
-
y2
2
=1
B、x2-
y2
8
=1
C、
x2
2
-
y2
16
=1
D、
x2
8
-y2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若雙曲線的一條漸近線方程是x+
2
y=0
,且過點(diǎn)(-6,4),則雙曲線標(biāo)準(zhǔn)方程是
x2
4
-
y2
2
=1
x2
4
-
y2
2
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•天津一模)拋物線y2=2px(p>0)上一點(diǎn)M(1,m) (m>0)到其焦點(diǎn)的距離為5,雙曲線
x2
a
-y2=1
的左頂點(diǎn)為A.若雙曲線的一條漸近線與直線AM平行,則實(shí)數(shù)a等于
1
9
1
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•湛江一模)已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的右焦點(diǎn)為F(c,0).
(1)若雙曲線的一條漸近線方程為y=x且c=2,求雙曲線的方程;
(2)以原點(diǎn)O為圓心,c為半徑作圓,該圓與雙曲線在第一象限的交點(diǎn)為A,過A作圓的切線,斜率為-
3
,求雙曲線的離心率.

查看答案和解析>>

同步練習(xí)冊答案