【題目】已知函數(shù),,
(1)若函數(shù)f(x)有兩個零點,求實數(shù)a的取值范圍;
(2)若a=3,且對任意的x1∈[-1,2],總存在,使g(x1)-f(x2)=0成立,求實數(shù)m的取值范圍.
【答案】(1)
(2)
【解析】
(1)令t=x2,則t∈[1,3],記,問題轉(zhuǎn)化為函數(shù)y=h(t)與y=a有兩個交點,利用函數(shù)的導(dǎo)數(shù)判斷函數(shù)的單調(diào)性求解函數(shù)的最小值然后求解實數(shù)a的范圍.
(2)由(1)知f(x)∈[1,2],記A=[1,2],通過當m=0時,當m>0時,當m<0時,分類求實數(shù)m的取值范圍,推出結(jié)果即可.
(1)由題意,函數(shù),,
令t=x2,則t∈[1,3],則,
要使得函數(shù)f(x)有兩個零點,即函數(shù)y=h(t)與y=a有兩個交點,
因為,當t∈(1,2)時,<0;當t∈(2,3)時,>0,
所以函數(shù)h(t)在(1,2)遞減,(2,3)遞增,
從而h(t)min=h(2)=4,,h(1)=5,
由圖象可得,當時,y=h(t)與y=a有兩個交點,
所以函數(shù)f(x)有兩個零點時實數(shù)a的范圍為:.
(2)由(1)知f(x)∈[1,2],記A=[1,2],
當m=0時,,顯然成立;
當m>0時,在[-1,2]上單調(diào)遞增,所以,
記,
由對任意的,總存在,使成立,可得,
所以且,解得,
當m<0時,在[-1,2]上單調(diào)遞減,所以,
所以且,截得,
綜上,所求實數(shù)m的取值范圍為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,已知橢圓C:的左、右頂點為A,B,右焦點為F.過點A且斜率為k()的直線交橢圓C于另一點P.
(1)求橢圓C的離心率;
(2)若,求的值;
(3)設(shè)直線l:,延長AP交直線l于點Q,線段BQ的中點為E,求證:點B關(guān)于直線EF的對稱點在直線PF上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:()的離心率為,且過點,橢圓的右頂點為.
(Ⅰ)求橢圓的的標準方程;
(Ⅱ)已知過點的直線交橢圓于,兩點,且線段的中點為,求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在長方體,中,,過三點的平面D截去長方體的一個角后,得到如圖所示的幾何體.
(1)求幾何體的體積;
(2)求直線與面所成角.(用反三角表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前項和為,若,則稱是“緊密數(shù)列”.
(1)若數(shù)列是“緊密數(shù)列”,且,,,,求的取值范圍;
(2)若為等差數(shù)列,首項,公差,且,判斷是否為“緊密數(shù)列”,并說明理由;
(3)設(shè)數(shù)列是公比為的等比數(shù)列,若數(shù)列與都是“緊密數(shù)列”,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,.
(1)若直線與圓:相切,求被圓:所截得弦長取最小值時直線的斜率;
(2)時,:表示圓,問是否存在一條直線,使得它和所有的圓都沒有公共點?如果存在,求出直線,若不存在,說明理由;
(3)若滿足不等式和等式的點集是一條線段,求取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知(
(1)當a=0時,求f(x)的極值;
(2)當a>0時,討論f(x)的單調(diào)性;
(3)若對任意的a∈(2, 3),x1, x2∈[1, 3],恒有(m-ln3)a-2ln3>|f(x1)-f(x2)|成立,求實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com