精英家教網 > 高中數學 > 題目詳情

【題目】設函數f(x)= ,其中k<﹣2.
(1)求函數f(x)的定義域D(用區(qū)間表示);
(2)討論函數f(x)在D上的單調性;
(3)若k<﹣6,求D上滿足條件f(x)>f(1)的x的集合(用區(qū)間表示).

【答案】
(1)解:設t=x2+2x+k,則f(x)等價為y=g(t)= ,

要使函數有意義,則t2+2t﹣3>0,解得t>1或t<﹣3,

即x2+2x+k>1或x2+2x+k<﹣3,

則(x+1)2>2﹣k,①或(x+1)2<﹣2﹣k,②,

∵k<﹣2,∴2﹣k>﹣2﹣k,

由①解得x+1> 或x+1 ,即x> ﹣1或x ,

由②解得﹣ <x+1< ,即﹣1﹣ <x<﹣1+ ,

綜上函數的定義域為( ﹣1,+∞)∪(﹣∞,﹣1﹣ )∪(﹣1﹣ ,﹣1+


(2)解:f′(x)= =

=﹣

由f'(x)>0,即2(x2+2x+k+1)(x+1)<0,則(x+1+ )(x+1﹣ )(x+1)<0

解得x<﹣1﹣ 或﹣1<x<﹣1+ ,結合定義域知,x<﹣1﹣ 或﹣1<x<﹣1+ ,

即函數的單調遞增區(qū)間為:(﹣∞,﹣1﹣ ),(﹣1,﹣1+ ),

同理解得單調遞減區(qū)間為:(﹣1﹣ ,﹣1),(﹣1+ ,+∞)


(3)解:由f(x)=f(1)得(x2+2x+k)2+2(x2+2x+k)﹣3=(3+k)2+2(3+k)﹣3,

則[(x2+2x+k)2﹣(3+k)2]+2[(x2+2x+k)﹣(3+k)]=0,

∴(x2+2x+2k+5)(x2+2x﹣3)=0

即(x+1+ )(x+1﹣ )(x+3)(x﹣1)=0,

∴x=﹣1﹣ 或x=﹣1+ 或x=﹣3或x=1,

∵k<﹣6,

∴1∈(﹣1,﹣1+ ),﹣3∈(﹣1﹣ ,﹣1),

∵f(﹣3)=f(1)=f(﹣1﹣ )=f(﹣1+ ),

且滿足﹣1﹣ ∈(﹣∞,﹣1﹣ ),﹣1+ ∈(﹣1+ ,+∞),

由(2)可知函數f(x)在上述四個區(qū)間內均單調遞增或遞減,結合圖象,要使f(x)>

f(1)的集合為:

)∪(﹣1﹣ ,﹣3)∪(1,﹣1+ )∪(﹣1+ ,﹣1+


【解析】(1)利用換元法,結合函數成立的條件,即可求出函數的定義域.(2)根據復合函數的定義域之間的關系即可得到結論.(3)根據函數的單調性,即可得到不等式的解集.
【考點精析】本題主要考查了函數的定義域及其求法和函數單調性的性質的相關知識點,需要掌握求函數的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數;②是分式函數時,定義域是使分母不為零的一切實數;③是偶次根式時,定義域是使被開方式為非負值時的實數的集合;④對數函數的真數大于零,當對數或指數函數的底數中含變量時,底數須大于零且不等于1,零(負)指數冪的底數不能為零;函數的單調區(qū)間只能是其定義域的子區(qū)間 ,不能把單調性相同的區(qū)間和在一起寫成其并集才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)是定義在R上的奇函數,當x≥0時,f(x)= (|x﹣a2|+|x﹣2a2|﹣3a2),若x∈R,f(x﹣1)≤f(x),則實數a的取值范圍為(
A.[﹣ , ]
B.[﹣ ]
C.[﹣ , ]
D.[﹣ , ]

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點p(1,m)在拋物線上,F為焦點,且.

(1)求拋物線C的方程;

(2)過點T(4,0)的直線交拋物線CA,B兩點,O為坐標原點,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點A(2,0),拋物線C:x2=4y的焦點為F,射線FA與拋物線C相交于點M,與其準線相交于點N,則|FM|:|MN|=________.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設數列{an}的前n項和為Sn , 滿足Sn=2nan+1﹣3n2﹣4n,n∈N* , 且S3=15.
(1)求a1 , a2 , a3的值;
(2)求數列{an}的通項公式.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知指數函數滿足,定義域為的函數是奇函數.

(1)求函數的解析式;

(2)若函數上有零點,求的取值范圍;

(3)若對任意的,不等式恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列說法中正確的是

A. 先把高三年級的2000名學生編號:1到2000,再從編號為1到50的50名學生中隨機抽取1名學生,其編號為,然后抽取編號為的學生,這樣的抽樣方法是分層抽樣法

B. 線性回歸直線不一定過樣本中心點

C. 若兩個隨機變量的線性相關性越強,則相關系數的值越接近于1

D. 若一組數據1、、3的平均數是2,則該組數據的方差是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】隨著經濟的發(fā)展,我市居民收入逐年增長,下表是我市一建設銀行連續(xù)五年的儲蓄存款(年底余額):

年份

2011

2012

2013

2014

2015

儲蓄存款(千億元)

5

6

7

8

10

為了研究計算的方便,工作人員將上表的數據進行了處理,,

(1)填寫下列表格并根據表格求關于的線性回歸方程;

時間代號

(2)通過(Ⅰ)中的方程,求出關于的回歸方程,并用所求回歸方程預測到2020年年底,該銀行儲蓄存款額可達多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如表提供了某廠節(jié)能降耗技術改造后,生產甲產品過程中記錄的產量x(噸)與相應的生產能耗y(噸標準煤)的幾組對照數據

x

3

4

5

6

y

2.5

3

4

4.5

(1)請畫出上表數據的散點圖;

(2)請根據上表提供的數據,求出y關于x的回歸直線方程;

(3)已知該廠技改前100噸甲產品的生產能耗為90噸標準煤試根據(2)求出的回歸直線方程,預測生產100噸甲產品的生產能耗比技改前降低多少噸標準煤?

注: .

查看答案和解析>>

同步練習冊答案